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Abstract
In this thesis, we extend the definition of motivic homotopy theory from schemes to a large
class of algebraic stacks and establish a six functor formalism. The class of algebraic stacks
that we consider includes many interesting examples: quasi-separated algebraic spaces, local
quotient stacks and moduli stacks of vector bundles. We use the language of ∞-categories
developed by Lurie to extend the definition of motivic homotopy theory. Morever, we use the
so-called ’enhanced operation map’ due to Liu and Zheng to extend the six functor formalism
from schemes to our class of algebraic stacks. We also prove that six functors satisfy properties
like homotopy invariance, localization and purity.

Zusammenfassung
In dieser Arbeit erweitern wir die Definition motivischer Homotopietheorie von Schemata auf
eine große Klasse algebraischer Stacks und etablieren einen Sechs-Funktor-Formalismus. Die
Klasse algebraischer Stacks, die wir betrachten, enthält viele interessante Beispiele: quasi-
separierte algebraische Räume, lokale Quotientenstacks und Modulstacks von Vektorbündeln.
Wir verwenden die Sprache der ∞-Kategorien, entwickelt von Lurie, um die Definition von
motivischer Homotopietheorie zu erweitern. Ferner benutzen wir die sogenannte ’enhanced
operation map’ von Liu und Zheng, um den Sechs-Funktor-Formalismus von Schemata auf un-
sere Klasse algebraischer Stacks auszuweiten. Wir zeigen außerdem, dass die sechs Funktoren
Eigenschaften wie beispielweise Homotopieinvarianz, Lokalisierung und Reinheit erfüllen.
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CHAPTER 1

INTRODUCTION

The six functor formalism was formulated by Grothendieck to give a framework for the basic
operations and duality statements for cohomology theories. In brief, a six functor formal-
ism is a theory of coefficient systems relative to any scheme with a collection of six functors
f∗, f∗, f

!, f!,⊗,Hom which satisfy a set of relations. This formalism is usually formulated in
the language of triangulated categories. In [MV99], Morel and Voevodsky define the general
theory of A1-homotopy theory of schemes which incorporates homotopy theoryin the field of
algebraic geometry. To a scheme S, they associate a triangulated category SH(S) which is de-
fined by applying A1-localization and P1-stabilization to the category of simplicial Nisnevich
sheaves. Voevodsky and Ayoub ([Ayo07a] and [Ayo07b]) constructed a six functor formalism
of A1-homotopy theory. In this thesis, we extend the definition of SH to a large class of alge-
briac stacks and provide a six functor formalism for SH using the language of ∞-categories
developed by Lurie ([Lur09] and [Lur17]).

In order to motivate the need of language of ∞-categories, let us recall the six functor
formalism of derived categories of ℓ-adic sheaves over an algebraic stack. To an algebraic stack
X , one can define the derived category of the algebraic stack X as derived category of ℓ-adic
étale sheaves over X . For example, if X = BGm, then the derived category of BGm is the
derived category of Gm-equivariant ℓ-adic étale sheaves over a point. As the connected group
Gm cannot act non-trivially on locally constant sheaves, this is equivalent to the category
of sheaves over a point. Thus this naive definition implies that D(BGm) is equivalent to the
derived category of a point. But we have

H∗(BGm) ∼= Ql[c]

where c is in degree 1 ([Tot99]).

In [LO08b] and [LO08a], Laszlo and Olsson define derived categories of algebraic stacks
and construct the six functor formalism using the lisse-étale topos. They use simplicial meth-
ods to to construct the derived category that gives the expected answer for the cohomology of
BGm. The fact that the lisse-étale topos is not functorial makes the construction of derived
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pullback bit technical.The language of ∞-categories allows us to circumvent this problem.

In [LZ17], Liu and Zheng construct a six functor formalism of derived ∞-categories of
ℓ-adic sheaves for any algebraic stack. To any scheme X, the derived ∞-category Det(X,Ql)
is the ∞-categorical enhancement of the usual derived category. The major advantange of
the ∞-categorical language is that the derived ∞-category satisfies étale descent. For any
algebraic stack X , the ∞-category Det(X ,Ql) consturcted by Liu and Zheng is isomorphic to
the limit of derived ∞-categories over Čech nerve of any atlas x : X→ X . In other words, we
have

Det(X ,Ql) ∼= lim
(

Det(X,Ql) Det(X×X X,Ql) Det(X×X X×X X,Ql) · · ·
)

(1.1)
where the maps in the limit are the derived pullback maps. Their construction uses abstract
descent theory of the language of ∞-categories. This also allows to construct the pullback
functor in a canonical way. Morever, they prove that their formalism agrees with the one
introduced by Laszlo and Olsson once one passes to homotopy categories of the derived ∞-
categories. Thus the language of ∞-categories seem advantageous to extend ∞-sheaves from
schemes to algebraic stacks. We shall use a similar technique in our setting of motivic homo-
topy theory but in this case extra care is needed because motivic invariants usually do not
satisfy étale descent.

To a Noetherian scheme of finite Krull dimension S, the motivic stable homotopy category
SH⊗(S) is a presentable stable symmetric monoidal ∞-category (we refer to [Rob15] for the
notations). The functorial assignment makes SH⊗ into a functor

SH⊗ : N(Schfd)op → CAlg(PrLstb) (1.2)

where the target is the ∞-category of stable presentable symmetric monoidal ∞-categories.
As mentioned above, we cannot use equation Eq. (1.1) as a definition of SH⊗ for an alge-
braic stack because SH⊗ does not satisfy étale descent and thus Eq. (1.1) would depend on
the choice of the atlas X. We resolve this problem by specifying a class of smooth atlases for
which we can prove descent. The resulting class of (2, 1)-category of algebraic stacks Nis-locSt
consists of algebraic stacks which admit an atlas admitting Nisnevich-local sections. This in-
cludes all quasi-compact, quasi-separated algebraic spaces, quotient stacks [X/G] where G is
an affine algebraic group, local quotient stacks, the moduli stack of vector bundles Bunn, the
moduli stack of G-bundles BunG and moduli space of stable maps. Using the formulation
of enhanced operation map ([LZ17]), we also manage to extend the six functor formalism
from schemes to Nis-locSt. Our main result is as follows (see Theorem 5.5.1 for a complete
statement):

Theorem 1.0.1. The functor SH⊗(−) extends to a functor

SH⊗
ext : N

D
• (Nis-locSt)op → CAlg(PrLstb).

Morever,
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1. For any X ∈ Nis-locSt, there exist functors ⊗,Hom : SHext(X )×SHext(X )→ SHext(X ).

2. For any morphism f : X → Y in Nis-locSt, there is a pair of adjoint functors

f∗ : SHext(Y)→ SHext(X ) , f∗ : SHext(X )→ SHext(Y).

3. For a morphism f : X → Y in Nis-locSt which is separated of finite type and representable
by algebraic spaces, there is a pair of adjoint functors

f! : SHext(X )→ SHext(Y) , f! : SHext(Y)→ SHext(X ).

These functors restrict to the known functors on the category of schemes. Furthermore,
the projection formula, base change, localization, homotopy invariance and purity extend to
Nis-locSt.

Hoyois defines SH for quotient stacks of the form [X/G] where G is tame ([Hoy17]). His
construction apriori depends on the presentation of the stack. Our construction allows us to
drop the tameness assumption for quotient stacks and provides a version of SH that does not
depend on the choice of a presentation.

We now give a brief outline of the chapters in the thesis.

1. In Chapter 2, we prove an∞-categorical generalization of the statement we have descent
along morphisms admitting sections. We also provide a skeletal description of the split-
simplicial category ∆−∞. The key result follows from the statement that split-simplicial
objects are colimit diagrams ([Lur09, Lemma 6.1.3.16]).

2. In Chapter 3, we enhance the motivic stable homotopy functor from schemes to algebraic
stacks. This follows from Theorem 3.4.1 which is set in an abstract setup of categories
of stacks admitting T -local sections (Definition 3.2.1). The key example of categories
of stacks admitting T -local sections is the (2, 1)-category Nis-locSt. It is important to
note that Theorem 3.4.1 is a special case of [LZ17, Proposition 4.1.1]. We give a new
proof of the theorem which is partly inspired from the proof of Liu and Zheng. The
extension theorem also allows to construct the four functors f∗, f∗,Hom and ⊗.

3. In Chapter 4, we construct the exceptional functors f!, f! and also prove base change
and projection formulas. This is proved by the so called enhanced operation map intro-
duced by Liu and Zheng in [LZ17]. In short, we extend the enhanced operation from
schemes to Nis-locSt in the setting of categories of stacks admitting T -local sections
(Theorem 4.1.1). The extension is a special case of the DESCENT program ([LZ17,
Chapter 4]) and we give a new proof of the extension of the enhanced operation from
schemes Nis-locSt which gives us the exceptional functors, projection formula and base
change.

4. In Chapter 5, we prove the other relations of the six functors namely smooth and proper
base change, localization, homotopy invariance and purity. We then collect all the results
in a single theorem (Theorem 5.5.1).
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5. In Appendix A, we recall the notions of ∞-categories that we need in the thesis. In
particular, we recall the notion of Kan extensions, presentable ∞-categories, ∞-sheaves
and stable ∞-categories ([Lur09],[Lur17] and [Lur18b]).

6. In Appendix B, we recall the notion of symmetric monoidal ∞-categories in terms of∞-operads ([Lur17, Chapter 2]) and module objects over commutative algebra objects
associated to an operad C⊗.

7. In Appendix C, we briefly recall the notions of motivic homotopy theory of schemes in
the language of ∞-categories ([Rob15], [Rob15] and [Rob14]). We also recall the six
operations and give a brief sketch of the construction of purity transformation ρf and
the pushforward transformation αf.

8. In Appendix D, we explain the construction of the enhanced operation map due to Liu
and Zheng ([LZ17]) which we use in Chapter 3. At first, we review the ∞-categorical
generalization of Deligne’s compactification ([LZ12, Theorem 0.1]). We also give a brief
idea of how the proof of the theorem. Then we recall the notion of partial adjoints
([LZ17, Proposition 1.4.4]). With the compactification theorem and partial adjoints, we
end the chapter with the construction of enhanced operation map.
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CHAPTER 2

DESCENT ALONG SECTIONS

In this chapter, we recall the infinity categorical setup generalizing the classical statement
that descent along morphisms that admit sections is usually automatic. We begin with the
corresponding statements for usual categories and then explain the higher categorical analog.
We include a skeletal description of the split-simplicial category ∆−∞ which we could not find
in the literature. The main result is then due to Lurie ([Lur09, Lemma 6.1.3.16]).

2.1 Split forks.
Definition 2.1.1. 1. A fork in a category C is a diagram of the form

a b c
d0−1

d1
1

d1
0

(2.1)

where d10 ◦ d0−1 = d11 ◦ d0−1.

2. A fork is an equalizer if a is the limit of the diagram

b c.
d1
1

d1
0

(2.2)

There are dual notions of forks and equalizers which are called coforks and coequalizers.

Example 2.1.2. 1. Let F : Cop → Sets be a presheaf on a site C admitting products. Then
F is a sheaf if for a covering map U→ X, the diagram

F(X) F(U) F(U×X U) (2.3)

is an equalizer.

9



SH for algebraic stacks. 2.1 - Split forks.

2. Let f : A→ B be a morphism of commutative rings. The diagram

A B B⊗A Bf

{1⊗b}

{b⊗1}
(2.4)

is a fork.

We now move to the definition of a split fork.

Definition 2.1.3. A fork

a b c
d0−1

d1
1

d1
0

(2.5)

is a split fork if it can be embedded into a diagram

a b c
d0−1

s−1
−1

d1
0

d1
1

s0−1

(2.6)

where

1. s−1−1d0−1 = ida,

2. s0−1d10 = idb,

3. s0−1d11 = d0−1s−1−1.

Lemma 2.1.4. A split fork is an equalizer.

Proof. Let

a b c
d0−1

s−1
−1

d1
0

d1
1

s0−1

(2.7)

be a split fork. We need to show it is a equalizer i.e. a is the limit of the diagram

b c.

d1
0

d1
1

(2.8)

Let h : x→ b be a morphism such that d10h = d11h. If we denote s−1−1h : x→ a by h ′′, then h
factors through h ′′ because

d0−1h
′′ = d0−1s

−1
−1h = s0−1d

1
1h = s0−1d

1
0h = h. (2.9)

The lifting of the map h is unique as s−1−1d0−1 = ida.

10
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Example 2.1.5. Let F : Cop → Sets be a presheaf where C is a site for which the coverings
are morphisms U→ X which admit a section. Then F is automatically a sheaf because

F(X) F(U) F(U×X U) (2.10)

is a split fork. The splitting maps are induced by the section of the map U→ X.

Remark 2.1.6. Split forks play an important role in Barr–Beck Monadicity theorem ([Lur17,
Theorem 4.7.3.5]). Split forks arise in the proof of faithfully flat descent.

2.2 Split-simplicial objects.
In this section, we give the simplicial analogs of forks and split forks: augmented and split-
simplicial objects. Augmented simplicial objects have the potential to be colimit diagrams.
As split-simplicial objects are simplicial analogs of split forks (which are limit diagrams by
Lemma 2.1.4), it is natural to expect them to be colimit diagrams. We shall recall the defini-
tions of the categories ∆+ and ∆−∞ and give a skeletal description of all of these categories.

Definition 2.2.1. [Lur09, Definition 6.1.2.2] The augmented simplicial category ∆+ is defined
as follows:

1. Objects: {[n]+ = [n] ∪ {−∞};n ≥ −1} where −∞ is the minimal element in [n]+, in
particular [−1]+ = {−∞}.

2. Morphisms: Hom∆+([m]+, [n]+) = {α : [m]+ → [n]+ ;α non-decreasing ; α−1(−∞) =
{−∞}}.

Definition 2.2.2. [Lur09, Lemma 6.1.3.16]
The split-simplicial category ∆−∞ is defined as follows:

1. Objects: Objects of ∆+.

2. Morphisms: Hom∆∞([m]+, [n]+) = {α : [m]+ → [n]+ , α non-decreasing ; α(−∞) =∞}.

Remark 2.2.3. We list some properties of the categories defined above:

1. The simplicial category ∆ (Definition A.1.1) is a full subcategory of ∆+. For the sake of
simplicity, we shall abuse the notation and write [n]+ as [n] by identifying ∆ as a full
subcategory of ∆+.

2. The category ∆+ is formed from ∆ by formally adjoining [−1] as the initial object.

3. Let [m]+, [n]+ be any two objects in ∆−∞. Then morphisms between [m]+ → [n]+ can
send elements other than −∞ to −∞. In particular, the unique morphisms [−1]+ → [n]+
in ∆+ admit a section [n]+ → [−1]+ in ∆−∞ given by mapping all elements to −∞.

Notation 2.2.4. The category ∆ and ∆+ has two special collection of maps for every positive
integer n.

11



SH for algebraic stacks. 2.2 - Split-simplicial objects.

1. We have n+ 1 maps dni : [n− 1]→ [n] ; 0 ≤ i ≤ n which are defined as

dni (j) =

{
j if j < i
j+ 1 if j ≥ i.

These are called face maps. The face map dni : [n−1]→ [n] is the unique non-decreasing
injective map which does not have i in its image.

2. We have n maps sn−1i : [n]→ [n− 1]; 0 ≤ i ≤ n− 1 which are defined as

sn−1i (j) =

{
j if j ≤ i
j− 1 if j > i.

These are called degeneracy maps. The degeneracy map sni : [n]→ [n− 1] is the unique
non-decreasing surjective map such that the element i has two preimages.

3. The category ∆+ has the map d0−1 : [−1]→ [0] which satisfies the relation

d10 ◦ d0−1 = d11 ◦ d0−1. (D1)

The face and degeneracy maps satisfy the following identites in ∆ (also in ∆+ and ∆−∞):

1. dn+1j ◦ dni = dn+1i ◦ dnj−1 0 ≤ i < j ≤ n.

2. snj ◦ sn+1i = sni ◦ s
n+1
j+1 0 ≤ i ≤ j < n.

3. snj ◦ dn+1i =


dni ◦ s

n−1
j−1 0 ≤ i < j < n

Id[n] 0 ≤ j < n and i = j or i = j+ 1
dni−1 ◦ s

n−1
j 0 ≤ j and j+ 1 < i ≤ n.

These relations are called simplicial identities and shall be denoted by S1.

Proposition 2.2.5. [Lan71, Page 173] Any morphism f : {0, · · · , n} → {0, · · · , n ′} in ∆ has
a unique representation

f = (dn
′

ik
◦ dn ′−1

ik−1
◦ · · · ◦ dn ′−h+1

j1
) ◦ (sn ′−h

j1
◦ sn ′−h−1

j2
◦ · · · ◦ sn−1jh

)

where the non-negative integers h, k satisfy n + k − h = n ′ and the subscripts i1, · · · , ik and
j1, · · · , jh satisfy

n ′ ≥ ik > · · · i1 ≥ 0 0 ≤ j1 < · · · < jh < n.

Corollary 2.2.6. The relations S1 provide a presentation of the category ∆ i.e. ∆ is the
smallest category containing the objects [n] and face and degeneracy maps satisfying the
relations S1.
Similarly the relations S1 and D1 provide a presentation of the category ∆+.

Proof. Given any finite composition of face and degeneracy maps, the relation S1 helps us to
rewrite the composition as the one in Proposition 2.2.5. This explains that every morphism in
∆ exist in the subcategory generated by face and degeneracy maps subjected to the relation
S1.
The same argument works for the category ∆+.

12



2.2 - Split-simplicial objects. SH for algebraic stacks.

Remark 2.2.7. 1. The skeletal description of ∆ looks like:

[0] [1] [2] · · ·

Here the bold arrows are the face maps and dotted arrows are the degeneracy maps.

2. Similarly, the skeletal description of ∆+ looks like:

[−1] [0] [1] [2] · · ·
d0−1

Notice that the diagram:

[−1] [0] [1]
d0−1

d1
0

d1
1

is a fork in the category ∆+ by the relation D1.

In order to get a presentation of the category ∆−∞, we need to define some additional
maps in ∆−∞.

Notation 2.2.8. The category ∆−∞ has splitting maps for all i ≥ −1 which are defined as
follows:

si−1 : [i+ 1]→ [i] ; si−1(j) =

{
−∞ j = 0,−∞
j− 1 otherwise.

The map si−1 is the unique non-decreasing surjective map for which −∞ has two preimages.

The maps s−1i satisfy the following relations:

1. sn−1 ◦ dn+10 = id[n] for all n ≥ −1.

2. sn−1 ◦ dn+1j = dnj−1 ◦ s
n−1
−1 : [n]→ [n] where n ≥ 0, 0 < j ≤ n+ 1.

3. sn−1j ◦ sn−1 = s
n−1
−1 ◦ snj+1 : [n+ 1]→ [n− 1] for all n > 0,−1 ≤ j ≤ n− 1.

These relations shall be denoted by S2.

Proposition 2.2.9. Let f : [m]→ [n] be a morphism in ∆−∞, then f has a unique represen-
tation of the form:

f = (dnik ◦ d
n−1
ik−1

◦ · · · ◦ dn ′−h+1
j1

) ◦ (sn ′−h
j1

◦ sn ′−h−1
j2

◦ · · · ◦ sn ′−1
jh

) ◦ (sn ′
−1 ◦ sn

′−1
−1 · · · ◦ sm−1

−1 )

where:

1. n ′ = m−m ′. Here m ′ = |{ i ∈ [m] | f(i) = −∞ , i ̸= −∞ }|.

2. n ′ − h+ k = n.

13



SH for algebraic stacks. 2.2 - Split-simplicial objects.

3. the subscripts i1, · · · , ik and j1, · · · , jh satisfy

n ′ ≥ ik > · · · i1 ≥ 0 0 ≤ j1 < · · · < jh < n.

Proof. Let f be the morphism in ∆−∞. Notice that f(j) = −∞ for 0 ≤ j < m ′. Let n ′ = n−m ′.
Then f can be factorized as as:

[m]
f ′
−→ [n ′]

f ′′
−→ [n]

where:

1. f ′ = sn ′
−1 ◦ s

n ′−1
−1 · · · ◦ sm−1

−1 .

2. f ′′ : [n]→ [n ′] such that f−1({−∞}) = {−∞}.

Now apply the decomposition of f ′′ considering it as a morphism in ∆+ by Proposition 2.2.5.
This gives us the description of f as required.
As the description of f ′ is intrinsic to the morphism f, the description of f is unique is equiv-
alent of saying that the description of f ′′ is unique. This is true because of Proposition 2.2.5.

We have the following corollary whose proof is same as the proof of Corollary 2.2.6.

Corollary 2.2.10. The relations S1,D1 and S2 provide a presentation of the category ∆−∞.

Remark 2.2.11. 1. The skeletal description of ∆−∞ looks like

[−1] [0] [1] [2] · · ·
d0−1

s−1
−1 s0−1

s1−1

2. The diagram

[−1] [0] [1]
d0−1

s−1
−1

d1
0

d1
1

s0−1

is a split fork. This is because of the relations in S2 (the first two relations applied to
n = 0). Hence it is an equalizer in ∆−∞.

We now recall the definition of simplicial, augmented simplicial and split-simplicial objects.

Definition 2.2.12. [Lur09, Definition 6.1.2.2] Let C be an ∞-category.

1. A simplicial object of C is a functor F : N(∆)op → C.

2. An augmented simplicial object of C is a functor F : N(∆+)
op → C.

3. A split-simplicial object of C is a functor F : N(∆−∞)op → C.

14
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Remark 2.2.13. 1. Notice thatN(∆+) = N(∆)▹ (where (−)▹ is the left cone of a simplicial
set ([Lur09, Notation 1.2.8.4])). Thus augmented simplicial objects are potential colimit
diagrams.

2. Split-simplicial objects are generalized notion of split forks in the simplicial setting (as
noted in the previous remark). By the Dold–Kan correspondence, split simplicial objects
correspond to augmented exact chain complexes ([Lur17, Section 4.7.2]).

A natural example of a split-simplicial object in explained in the following lemma

Lemma 2.2.14. Let C be an ordinary category admitting products. Let f : X → Y be a
morphism in C which has a section s : Y → X (i.e. f ◦ s = idY). Then the following diagram

X+
•,Y,f,s := · · ·X×Y X×Y X X×Y X X Y (2.11)

is a split-simplicial object of N(C).

Proof. We need to define a functor F : N(∆−∞)op → N(C). We define it as a functor of the
underlying ordinary categories F : ∆op−∞ → C as follows:

1. F([n]) =
{
Y if n = −1

XnY otherwise
where XnY = X× X×Y X · · · ×Y X︸ ︷︷ ︸

n+1 times

.

2. Let p : [m]→ [n] be a morphism in ∆−∞, then

F(p) : XnY → XmY

is defined in the following manner. Then we define the map in the following cases:

(a) For n = −1, F(p) : Y → XmY given by y→ (s(y), s(y), . . . , s(y)).
(b) For m = −1, F(p) : XnY → Y given by (x0, x1, ..xm)→ f(x0). Note that the definition

makes sense as f(x0) = f(xi) for all i by the property of fiber product.
(c) For n,m > −1, F(p)(x0, x1, ...xn) = (x ′0, ....x

′
m) where

x ′i =

{
s ◦ f(x0) if p(i) = −∞
xp(i) otherwise

3. We need to check that the assignment on the level of morphisms is compatible with
compositions. This is immediate from the definitions above.

Remark 2.2.15. 1. There is another way of proving the lemma above. One can define
the morphisms only for splitting, face and degeneracy maps and verify that they satisfy
the conditions S1,D1 and S2.

2. The above lemma holds true is N(C) is replaced by any ∞-category C ([Lur17, Propo-
sition 4.7.2.9]).
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2.3 Properties of split-simplicial objects.
As mentioned in the beginning of the previous section, split-simplicial objects have the poten-
tial to be colimit diagrams. This section quotes the result and ends with a corollary pertaining
to the example described in Lemma 2.2.14

Lemma 2.3.1. [Lur09, Lemma 6.1.3.16] Let X : N(∆−∞)op → C be a split simplicial object.
Then it is a colimit diagram.

Corollary 2.3.2. Let F : N(C) → D be a functor between ∞-categories. Let X+
•,Y,f,s :

N(∆∞)op → N(C) be the split-simplicial object defined in Lemma 2.2.14.
Then F(Y) is the colimit of the diagram

F(X) F(X×Y X) · · ·

Proof. As X+
•,Y,f,s is a split-simplicial object in C, then F(X+

•,Y,f,s) : N(∆−∞)op → C → D is also
a split-simplicial object in D and thus a colimit diagram by Lemma 2.3.1.
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CHAPTER 3

ENHANCEMENT OF SHEAVES ALONG
COVERINGS WITH LOCAL SECTIONS

In this chapter, we prove Theorem 3.4.1 which enables us to extend sheaves from schemes to
algebraic stacks. This key point is that for cohomology theories like SH, descent may not
be true for general smooth morphisms, which are used as atlases for algebraic stacks. From
the previous chapter, we see that descent is automatic for smooth morphisms that admit a
section (Lemma 2.2.14). Thus if the atlas admits local sections in a topology that is coarser
than the smooth topology, then it is plausible to extend sheaves from schemes to a large class
of Artin stacks.

The first section of the chapter introduces the notion of T - local sections associated to a
site (C, T ). In the second section, we construct a (2, 1)-category called ”category of stacks
admitting T -local sections”. In the third section, we introduce the (2, 1)-category Nis-locSt
for which we extend cohomology theories like SH. The abstract formalism of category of
stacks admitting T -local sections help us to prove the Theorem 3.4.1 in the fourth section. In
the last section, we apply Theorem 3.4.1 to define the stable homotopy theory on Nis-locSt
and the derived category of an algebraic stack.

3.1 Morphisms admitting T -local sections.
Let C be a category admitting products and small coproducts equipped with a Grothendieck
topology T . For any Y ∈ C, let Cov(Y) be the collection of coverings of Y.

Definition 3.1.1. A morphism f : X→ Y in C admits T -local sections if there exists a family
{pi : Yi → Y}i∈I ∈ Cov(Y) and morphisms si : Yi → X such that the diagram

X

∐
i Yi Y

f

⨿
si⨿

pi

(3.1)
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SH for algebraic stacks. 3.1 - Morphisms admitting T -local sections.

commutes.

Example 3.1.2. In the category of schemes equipped with étale topology, any smooth sur-
jective morphism admits étale local sections. This follows from [Sta21, Tag 055U].

Lemma 3.1.3. Morphisms admitting T -local sections are stable under pullbacks and compo-
sitions.

Proof. Stable under pullbacks: Let f : X → Y be a morphism admitting T -local sec-
tion and let g : Y ′ → Y be a morphism in C. We denote the pullback of f along g by
f ′ : X ′ := X×Y Y ′ → Y ′. We need to show that f ′ admits a T -local section.
As f admits T -local sections, there exists a covering p : Ỹ → Y and a morphism s : Ỹ → X

such that p = f ◦ s..
Then p ′ : Ỹ ′ := Y ′ ×Y Ỹ → Y ′ is a covering and s ′ := id×s : Ỹ ′ → X ′ satisfies p ′ = f ′ ◦ s ′.
Thus f ′ admits T -local sections.

Stable under compositions: Let f : X → Y and g : Y → Z be morphisms admitting
T -local sections. We need to show that g ◦ f admits T -local sections. As g admits T -local
sections, we have a covering q : Z̃→ Z and a section s : Z̃→ Y.
By (1),the morphism f ′ := Z ′ = Z̃ ×Y X → Z̃ admits T -local sections. So there exists a
covering p : Z̃ ′′ → Z̃ admitting a section s ′′ : Z̃ ′′ → Z̃ ′.

These morphisms give rise to a commutative diagram

X

Z̃ ′ Y

Z̃ ′′ Z̃ Z,

f

f ′

s ′

g

p

s ′′ s

q

(3.2)

i.e.. s ′ ◦ s ′′ is a T -local section of g ◦ f.

Corollary 3.1.4. The category C with the set of coverings as

CovT -loc(X) := {{xi : Xi → X}|
∐
i

xi admits T − local sections}

defines a site.

Proof. By definition, identity morphisms admit T -local sections. As morphisms admitting
T -local sections are stable under pullbacks and compositions (Lemma 3.1.3), we see that C
with the coverings T -loc forms a site.

The following proposition says that sheaves on C with respect to the topology T are
equivalent as sheaves on C with respect to the topology T -loc.

Proposition 3.1.5. Let F : N(C)op → D an ∞-sheaf. Then F satisfies descent along mor-
phisms that admit T -local sections.
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3.2 - Categories of stacks admitting T -local sections. SH for algebraic stacks.

Proof. Let f : X→ Y be a morphism in C which admits T -local sections. Thus there exists a
covering φ : Ỹ ′ → Y and a section s ′ : Ỹ → X̃ := Ỹ ×Y X of f ′ : X̃→ Ỹ such that the diagram

X̃ X

Ỹ Y

φ ′

f ′ f

φ

s ′

commutes in C.
As f ′ has a section, f ′ satisfies F-descent by Corollary 2.3.2.
As F is an ∞-sheaf, the horizontal arrows have F-descent. As f ′, φ and φ ′ satisfy F-descent,
by Lemma A.16.8 we get that f satisfies F-descent.

Remark 3.1.6. When C = Sch and T = ét, the above proposition gives us that the category
of étale sheaves and category of smooth sheaves are equivalent.

3.2 Categories of stacks admitting T -local sections.
We want to extend sheaves on schemes to the (2, 1)-category of algebraic stacks. This exten-
sion is a two step process. We first extend from schemes to algebraic spaces and then from
algebraic spaces to algebraic stacks. In order to formalize the statements in a coherent man-
ner, we define an abstract (2, 1)-category StC which incorporates the properties of algebraic
spaces and algebraic stacks.

Definition 3.2.1. Let C be a category equipped with a Grothendieck topology T . A category
of stacks admitting T -local sections is a (2, 1)-category StC together with a fully faithful
inclusion iC : C ↪→ StC satisfying the following properties:

1. StC admits fiber products and small coproducts.

2. Given any object X ∈ StC , there exists a morphism x : X → X with X ∈ C such that
for any morphism y : X ′ → X in C, the fiber product x ′ : X ′ ×X X→ X ′ admits T -local
sections. We say that x as an atlas admitting T -local sections.

3. The diagonal X → X × X is representable in C.

Remark 3.2.2. Here representablity is understood as for algebraic stacks i.e. a morphism
f : X → Y in StC if for all Y → Y with Y ∈ C, the fiber product X ×Y Y is in C. With this
definition, the diagonal map being representable is equivalent of saying that any morphism
x : X→ X where X ∈ C is representable.
As in the case of algebraic stacks, representable morphisms are stable under pullbacks.

Definition 3.2.3. Let StC be a category of stacks admitting T -local sections.
A morphism f : X → Y is said to admit T -local sections if there exists a an atlas y : Y → Y
and a morphism s : Y → X such that f ◦ s = y.
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The following gives a simpler definition for morphisms admitting T -local sections in the
setting of representable morphisms.

Lemma 3.2.4. A representable morphism f : X → Y in StC admits T -local sections iff for
any morphism v : V → Y with V ∈ C, the base change morphism f ′ : V ×Y X → V is a
morphism admitting T -local sections in C.

Proof. Let f be a representable morphism admitting T -local sections. Let v : V → Y be a mor-
phism where V ∈ C. We want to show that the base change morphism f ′ : X ′ := V ×Y X → V

is a morphism admitting T -local sections. By definition, there exists an atlas admitting T -
local sections v ′ : V ′ → Y and a section s : V ′ → X . Then the base change morphism
v ′′ : V ′′ := V ′ ×Y V → V admits T -local sections.
On the other hand, the section s induces a map s ′ : V ′′ → X ′. As v ′′ admits T -local sections,
there exists a covering ṽ : Ṽ → V and a section s ′′ : Ṽ → V ′′.
Thus there exists a covering ṽ and a section s ′ ◦ s ′′ implying that f ′ admits T -local sections.

For the other direction, let v : V → Y be an atlas admitting T -local sections. The
assumptions says that the base change morphism f ′ : X ′ := X ×Y V is a morphism admitting
T -local sections. Thus there exists a covering v ′ : V ′ → V and a section s ′ : V ′ → X ′. Then
the compositions v◦v ′ and x ′ ◦s ′ imply that f admits T -local sections (here x ′ is the pullback
of v along f).

Lemma 3.2.5. The pullback of an atlas along any morphism in StC is a morphism admitting
T -local sections.

Proof. Let y : Y → Y be an atlas admitting T -local sections and let f : X → Y be a morphism
in StC . We want to show that y ′ : X ′ := Y ×Y X → X admits T -local sections. As v ′ is
representable, by Lemma 3.2.4 it suffices to show that for any morphism x : X → X where
X ∈ C, the fiber product y ′′ : X ×X X ′ → X admits T -local sections. This follows from the
fact that y ′′ is pullback of y along y ◦ x and y is an atlas.

Lemma 3.2.6. Morphisms in StC admitting T -local sections are stable under pullbacks and
compositions.

Proof. Stable under pullbacks: Consider a pullback square

X ′ X

Y ′ Y

f ′ f (3.3)

where f admits T -local sections. Thus, there exists an atlas y : Y → Y and a morphism
g : Y → X such that f◦g = y. Then the base change morphism ỹ : Y ′′ := Y×Y Y ′ → Y ′

admits T -local sections. As Y ′ admits a morphism to X (via g), we have a unique
morphism g ′′ : Y ′′ → X ′ such that f ′ ◦g ′′ = ỹ. We denote y ′ : Y ′ → Y ′′ ỹ−→ Y ′′ to be the
composition where Y ′ is an atlas of Y ′′. Note that y ′ admits T -local sections. Denote
g ′ to be composition g ′ : Y ′ → Y ′′ g

′′
−−→ X ′′. Then we have that f ′ ◦g ′ = y ′ thus proving
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the fact that f ′ admits T -local sections.

Stable under compositions: Let f : X → Y and g : Y → Z be morphisms admitting
T -local sections. Thus there exists atlases z : Z → Z, y : Y → Y and morphisms
p : Z → Y, q : Y → X such that g ◦ p = z and f ◦ q = y. Let p ′ : Z ′ := Y ×Y Z → Y

and y ′ : Z ′ → Z be the base change of p and y respectively. Thus y ′ admits T -local
sections. We denote the compositions by z ′ := z◦y ′ : Z ′ → Z and q ′ := q◦p ′ : Z ′ → X .
Thus we get that q ′ ◦ (g ◦ f) = z ′ implying that g ◦ f admits T -local sections (as z ′ is
an atlas of Z).

The following lemma gives us another definition of morphisms admitting T -local sections
which shall help us to prove the sheaf condition in Theorem 3.4.1.

Lemma 3.2.7. A morphism f : X → Y admits T -local sections iff there exists a commutative
diagram

X X

Y Y

x

f ′ f

y

(3.4)

where f ′ admits T -local sections in C and x, y are atlases admitting T -local sections.

Proof. Let f be a morphism admitting T -local sections. Let y : Y → Y be an atlas admitting
T -local sections. Then the base change morphisms f ′′ : X ′ := X ×Y Y → Y and x ′ : X ′ → X
admit T -local sections. Let x ′′ : X→ X ′ be an atlas of X ′. Then the compositions f ′ := f ′′◦x ′′
and x := x ′ ◦ x ′′ admit T -local sections giving us the commutative diagram that was needed.
For the other direction, consider a commutative square

X X

Y Y

x

f ′ f

y

(3.5)

where f ′ admits T -local sections and x, y are atlases. By definition there exists a covering
y ′ : Y ′ → Y in the topology T and a morphism s ′ : Y ′ → X such that f ◦ s = y ′. Defining
s = x ◦ s ′ and y ′′ : Y ′ → Y → Y we get that f ◦ s = y ′′ where y ′′ is an atlas of Y. Hence f
admits T -local sections.

For any object X ∈ StC , define Cov(X ) as the set of families of the form {xi : Xi → X }i∈I
such that x :=

∐
i xi :

∐
iXi → X admits T -local sections.

Lemma 3.2.8. The family of coverings admitting T -local sections Cov(X ) for every object
X ∈ StC defines a Grothendieck topology on StC. We will write (StC , T - loc) for the corre-
sponding site.
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Proof. The identity morphisms in StC admit T -local sections. By Lemma 3.2.6, T -local
sections are stable under pullbacks and compositions. Thus the (2, 1)-category StC defines a
site.

3.3 The (2, 1)-category Nis-locSt.
In this section, we introduce the class of stacks for which we can extend cohomology theories
that satisfy descent with respect to the Nisnevich topology. This class of stacks will be called
Nis-locSt and we will explain that many interesting Artin stacks are contained in this class. In
particular, we show that this contains all local quotient stacks and quasi-separated algebraic
spaces.

At first, we consider C = Sch, the category of schemes equipped with the Nisnevich
topology. Then any quasi-separated algebraic space has an atlas admitting Nisnevich-local
sections ([Knu71, Chapter 2, Theorem 6.3]). So we can consider StC = N(Algsp) to be the
category of quasi-separated algebraic spaces.

Remark 3.3.1. By the above discussion, given any quasi-separated algebraic space X , there
exists a Nisnevich covering x : X→ X where X is a scheme.

Notation 3.3.2. The category Nis-locSt is the category of algebraic stacks for which there
exists a smooth atlas admitting Nisnevich-local sections. In the terminology introduced in
Definition 3.2.1, this is the category of stacks admitting Nisnevich-local sections for the cate-
gory N(Algsp) of quasiseparated algebraic spaces.

Before listing some examples of algebraic stacks in Nis-locSt, let us verify some properties
of the category Nis-locSt.

Lemma 3.3.3. The (2, 1)-category Nis-locSt admits fiber products.

Proof. Let
X2

X1 X0

(3.6)

be a diagram where X0,X1 and X2 are objects in Nis-locSt. We want to show that X3 :=
X1 ×X0

X2 is algebraic stack which has an atlas admitting Nisnevich-local sections.
Let x0 : X0 → X0 be an atlas admitting Nisnevich-local sections. At first, we prove the
following claim

Claim 3.3.4. Let f : X → Y be a morphism in Nis-locSt, then for every atlas y : Y → Y,
there exists of a 2-commutative square

X X

Y Y

x

f ′ f

y

(3.7)

where f ′ is a morphism in C and x is an atlas admitting Nisnevich-local sections.
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Proof of claim. Let x : X0 → X be an atlas of X . Then the base change x ′ : X ′ := X×YX→ X
is a morphism admitting T -local sections. Therefore x : X := X0×X X

′ → X ′ x ′−→ X is an atlas
of X fitting in the diagram

X X

Y Y

ỹ

f ′ f

y

(3.8)

where f lies in C and y, x are morphisms admitting T -local sections.

Applying the claim, we get that there exist atlases x1 : X1 → X1 and x2 : X2 → X2 such
that the following diagrams

X1 X0

X1 X0,

x1 x0

X2 X0

X2 X0,

x2 x0 (3.9)

commute. This induces a natural map x3 : X3 := X1 ×X0
X2 → X3. We claim that x3 is an

atlas admitting Nisnevich-local sections. Let v3 : V → X3 be a morphism where V is a scheme.
Then it induces maps v1 : V → X1, v0 : V → X0 and v2 : V → X2. Thus the base change
morphisms x ′1 : X ′

1 := V ×X1
X1 → V , x ′2 : X ′

2 := V ×X2
X2 → V and x ′0 : X ′

0 := V ×X0
X0 → V

admit Nisnevich-local sections. As the fiber product V ×X3
X3 ∼= X ′

1 ×X ′
0
X ′
2, the morphism

x ′3 : V ×X3
X3 → V admits Nisnevich-local sections. Thus x3 is an atlas admitting Nisnevich-

local sections.

Lemma 3.3.5. Let f : X → Y be a morphism of algebraic stacks representable by algebraic
spaces such that Y ∈ Nis-locSt, then X ∈ Nis-locSt.

Proof. Let y : Y → Y be an atlas admitting Nisnevich local sections. By Remark 3.3.1, it
suffices to show that the base change morphism x : X := Y ×Y X → X admits Nisnevich-local
sections where X is an algebraic space. Let x ′ : X ′ → X be a morphism where X is a scheme.
As X ′′ := X ′×X X ∼= X ′×Y Y, the base change morphism y ′ : X ′′ → Y is a morphism of scheme
admitting Nisnevich-local sections.

Before proving the next corollary, let us recall that an algebraic stack X is a local quotient
stack if it admits a open covering by quotient stacks of the form [X/G] where G is an affine
algebraic group ( [FHT11, A.2.2]).

Corollary 3.3.6. All local quotient stacks are contained in Nis-locSt.

Proof. As Zariski open coverings admit Zariski-local sections, it suffices to prove that quotient
stacks lie in Nis-locSt. At first, we see that BGLn lies in Nis-locSt. This is because the atlas
pt→ BGLn is a GLn-torsor. As GLn is special, GLn-torsors are Zariski-locally trivial.
If G is an affine algebraic group, then the inclusion i : G ↪→ GLn induces a representable mor-
phism i : BG→ BGLn. As BGLn ∈ Nis-locSt, by Lemma 3.3.5 we get that BG ∈ Nis-locSt.
The map [X/G]→ BG is representable. Applying Lemma 3.3.5, we get that [X/G] ∈ Nis-locSt.
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Remark 3.3.7. Note that unless G is a special group, the standard atlas X → [X/G] of
a quotient stack may not admit Nisnevich-local sections. In the proof above, this atlas is
replaced by a scheme X ′′ which is a Nisnevich cover of the algebraic space X×G GLn. Lets us
explain this in detail.
We can write [X/G] as [X ×G GLn/GLn]. The object X ×G GLn exists as an algebraic space.
Thus the morphism x ′ : X×G GLn → [X/G] is a GLn-torsor and hence admits Nisnevich-local
sections. By Remark 3.3.1, we get that there exists a Nisnevich cover x ′′ : X ′′ → X ×G GLn
where X ′′ is a scheme. Hence, we get that the morphism x ′ ◦ x ′′ : X ′′ → [X/G] is an atlas
admitting Nisnevich-local sections.

Recall that Totaro and Gross explained that the property of being a quotient stack is
closely related to the resolution property ([Tot04] and[Gro17]).

Corollary 3.3.8. Let X be a quasi-compact and quasi-separated algebraic stack which has
affine stabilizers at closed points and satisfies the resolution property. Then X ∈ Nis-locSt.

Proof. Under the assumptions, we get that X ∼= [U/GLn] where U is a quasi-affine scheme
([Tot04, Theorem 1.1] and [Gro17, Theorem A]). Thus Corollary 3.3.6 implies that X ∈
Nis-locSt.

We now explain how local constructions like blow ups and deformation to normal cone
([LMB00, Chapter 14]) also lie in Nis-locSt. Before stating the corollary, let us briefly recall
the notions. Let X be an algebraic stacks and z : Z ↪→ X be a closed substack and I ⊂ OX
be the ideal sheaf of Z. For any scheme T , we shall denote T ′ to be the fiber product of T
along z.

Notation 3.3.9. 1. The blowup of X along Z is the algebraic stack BlZ(X ) := Proj(⊕n≥0I n
Z )

which admits a morphism representable by schemes prbl : BlZ(X ) → X such that for
any morphism T → X , the fiber product BlZ(X )×X T is isomorphic to BlT ′ T .

2. The normal cone NZ(X ) := Spec(⊕n≥0I n/I n+1) is the algebraic stack which admits
a morphism prn : NZ(X )→ Z representable by schemes.

3. The deformation to the normal cone DZ(X ) is the analog of deformation space in the
setting of schemes. Let us recall the definition in the setting of schemes ([Ful84, Chapter
6]). Let X be a scheme and Z be a closed subscheme of X. Then the deformation space
is defined as

DZX := BlZ×{0}(X× A1)/BlZ×{0}(X× {0}).

The algebraic stack DZ(X ) admits a schematic representable morphism prd : DZ(X )→
X ×A1 such that the fibers of prd over X × {0} and X × {1} are the normal cone NZ(X )
and the stack X respectively.

Corollary 3.3.10. Let X ∈ Nis-locSt and let Z be a closed substack of X . Then BlZ(X ),NZ(X )
and DZ(X ) belong to Nis-locSt.

Proof. As the morphisms prbl : BlZ(X )→ X ,prn : NZ(X )→ Z,prd : DZ(X )→ (X ×A1) are
representable, Lemma 3.3.5 gives us that these algebraic stacks also lie in Nis-locSt.

24



3.4 - Extension of sheaves from schemes to algebraic stacks. SH for algebraic stacks.

Corollary 3.3.11. 1. For any projective variety X, the stack of vector bundles Bunn and
the stack of G-bundles BunG for an affine algebraic group G are in Nis-locSt. The same
result holds for stacks of Higgs bundles HiggsG.

2. The moduli spaces of stable maps are in Nis-locSt.

Proof. 1. The stack of vector bundles Bunn can be written as a union of Bun≤m
n where

Bunmn is the open substack of vector bundles of bounded maximal slope m. The stack
Bunmn is a locally closed substack of a quotient stack by Quot scheme construction
([HL10, Theorem 3.3.7 and Section 4.3]). Thus Bunn is a local quotient stack and hence
by Corollary 3.3.6 lies in Nis-locSt.
As the morphism BunG → Bunn is representable, we get that BunG is in Nis-locSt
(Lemma 3.3.5). The same argument holds for Higgs bundles as HiggsG → BunG is
representable.

2. The moduli space of stable maps is isomorphic to a quotient stack of the form [J/PGLn]
where J is a quasi-projective variety([FP97, Section 2.4]). Hence by Corollary 3.3.6, the
moduli space of stable maps lies in Nis-locSt.

Remark 3.3.12. In some applications, it is useful to use other topologies other than the
Nisnevich topology, for example

1. Consider the category of schemes Sch with the étale topology. Then by similar reasoning
in the example before, one can consider StC = N(Algsp). Now considering C = N(Algsp)
with the étale topology, one can consider StC to be the (2, 1)-category of all algebraic
stacks which we denote by AlgSt. This follows from Example 3.1.2.

2. We could also use the Zariski topology. This class no longer includes algebraic spaces,
but still contains many interesting stacks:

(a) Quotient stacks [X/G] where G is special.
(b) Quotient stacks [X/G] where X is quasi-projective with a G-linearized action.
(c) Quotient stacks [X/G] where G is connected and X is equivariantly embedded as a

closed subscheme of a normal variety.

When G is special, the atlas X → [X/G] is a G-torsor. As G is special, a G-torsor is
Zariski-locally trivial. Hence, it is a Zariski-local section.
In the other cases, by [EG98, Proposition 23] to U = GLn, the quotient X×GGLn exists
as a scheme. Thus, we get [X/G] = [X×G GLn /GLn].

3.4 Extension of sheaves from schemes to algebraic stacks.
In this section, we state and prove the theorem which helps us to extend ∞-sheaves from
schemes to algebraic stacks. As we will use Čech nerves to verify the sheaf condition, we
will from now on assume that the categories C and StC satisfies the conditions in Proposi-
tion A.17.7 i.e. coproducts are disjoint and finite coproducts are universal. These conditions
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are satisfied in all of the examples in the previous section. Theorem 3.4.1 is a special case of
[LZ17, Proposition 4.1.1]. As this result is crucial for our construction of SH⊗

ext(−) and the
special case allows for a shorter proof, we give a self-contained proof of the theorem. Before
formulating the result, let us recall that an∞-category D admits geometric realizations if any
simplicial object of D admits a colimit in D.

Theorem 3.4.1. Let (C, T ) be a site and StC a category of stacks admitting T -local sections.
Let F : N(Cop) → D be an ∞-sheaf where Dop is an ∞-category admitting geometric realiza-
tions. Then F can be extended to an ∞-sheaf Fext on (ND• (StC), T -loc).

In particular given any object X ∈ StC and an atlas x : X→ X admitting T -local sections,
Fext(X ) can be computed as a limit over the Čech nerve X+

•,x over x. In other words,

Fext(X ) ∼= lim( F(X) F(X×X X) · · · ). (3.10)

Idea of constructing the functor Fext: Given any zero simplex σ0 i.e. an object
X ∈ ND• (StC), we would like to define Fext(X ) by Eq. (3.10). As this definition depends on
the atlas x, we start with an intrinsic description considering all Čech nerves of atlases of
objects of StC .
Define Cov(StC) to be the Duskin nerve of the subcategory of the (2, 1)-category Fun((∆+)

op,StC)
whose objects are Čech nerves σ : N(∆+)

op → ND• (StC) of atlases admitting T -local sections
of objects of StC . We shall denote the objects of Cov(StC) by pairs (X , x : X → X ) where
X ∈ StC and x : X→ X is an atlas admitting T -local sections.

The inclusion [−1] ↪→ N(∆+) induces the morphism

p : Cov(StC)op → ND• (StC)op.

As every object in StC admits a cover, the morphism p is surjective on the level of objects.

Claim 3.4.2. The morphism p : Cov(StC) → ND• (StC) is surjective on n-simplicies. More
precisely, let σn be an n-simplex of ND• (StC) where n ≥ 1. Then there exists a map

σ1n : ∆1 × ∆n → ND• (StC)

such that

1. σ1n|[0]×∆n factors through N(C) ⊂ ND• (StC),

2. σ1n([1]× ∆n) = σn and

3. σ1n(∆1 × [j]) is a morphism admitting T -local sections for all 0 ≤ j ≤ n.

Proof of the claim. The case n = 1 follows from Claim 3.3.4. The general case follows by in-
duction as for any n-simplex (X0, . . . ,Xn), there exists compatible choice of atlas (X0, . . . , Xn−1)
by induction. Such a family can be extended to a compatible family (X0, X1, . . . , Xn) .

This proves the surjectivity of p on the level of simplices because the Čech nerve of
σ1n (considered as an edge ∆1 → Fun(∆n,ND• (StC))) produces an element in n-simplex of
Cov(StC).
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Morphisms of coverings induce morphisms of Čech nerves that are mapped to the identity
via p. We shall denote the collection of all these morphisms in Cov(StC) by R. These are
called refinements of coverings.

Proposition 3.4.3. The morphism p : Cov(StC)op → ND• (StC)op is a localization of Cov(StC)
along R.

Proof. As p sends R to equivalences, the morphism p induces a morphism

p ′ : Cov(StC)[R−1]op → ND• (StC)op

where i : Cov(StC)op → Cov(StC)op[R−1] is the anodyne map constructed in existence of
localization (Remark A.14.4). By Proposition A.14.3, we want to show that p ′ is a categorical
equivalence. In particular we show that p ′ is a trivial fibration of simplicial sets (which is a
categorical equivalence by Lemma A.8.2).
Thus given any commutative diagram of simplicial sets

∂∆n Cov(StC)[R−1]op

∆n ND• (StC)op,

τn

p ′τ ′n

σn

(3.11)

we need to show the existence of a dotted arrow such that the diagram commutes.
As the objects of Cov(StC)[R−1]op and Cov(StC)op coincide and p is surjective on 0-simplices,
this implies that p ′ is surjective on 0-simplices. This shows the claim for n = 0.

Let n ≥ 1. We shall denote the vertices of σn and τn by X0,X1, · · · Xn and (X0, x0 :
X0 → X ), (X1, x1 : X1 → X1), · · · (Xn, xn : Xn → Xn). As p is surjective on n-simplices, there
exists a morphism σ ′

n : ∆n → Cov(StC)op which lifts σn. Let us denote the vertices of σ ′
n by

(X0, x ′0 : X ′
0 → X0), (X1, x ′1 : X ′

1 → X1), . . . , (Xn, x ′n : X ′
n → Xn).

For each 0 ≤ i ≤ n, the morphism x ′′i : X ′′
i := Xi ×Xi

X ′
i → Xi is an atlas admitting T -local

sections. The morphisms σ ′
n and τn induces a morphism

σ ′′
n : ∂∆n → Cov(StC)[R−1]op

whose vertices are given by (X0, x ′′0 ), (X1, x ′′i ), . . . , (Xn, x ′′n). Note that the projection maps
pri : X ′′

i → Xi and pr ′i : X ′′
i → X ′

i are elements of R and therefore become equivalences in the
localization. This induces a map

fn : ∂∆n × ∆1
∐

{0}×∂∆n

{0}× ∆n → Cov(StC)[R−1]op

where fn|{0}×∆n = σ ′
n , fn|{1}×∂∆n = σ ′′

n and fn|[k]×∆1 = pr ′k for all 0 ≤ k ≤ n. Applying
Lemma A.8.14 to the morphism fn induces a morphism f ′n : ∆n × ∆1 → Cov(StC)[R−1]op.
In particular the morphism σ ′′

n extends to a morphism τ ′′n : ∆n → Cov(StC)[R−1]op. The
morphisms τ ′′n and τn produces a map

gn : ∂∆n × ∆1
∐

∂∆n×{1}

∆n × {1}→ Cov(StC)[R−1]op
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where gn|∆n×{1} = τ ′′n, gn|∂∆n×{0} = τn and gn|[k]×∆1 = prk for 0 ≤ k ≤ n. As the mor-
phism Fun(∆n,D)→ Fun(∂∆n,D) is an isofibration for n ≥ 1,([Lan21, Proposition 2.2.5], see
Lemma A.8.14), gn extends to a morphism g ′

n : ∆n × ∆1 → Cov(StC)[R−1]op. In particular,
we have extended τn to a morphism τ ′n : ∆n → Cov(StC)[R−1]op. Thus there exists a solution
to the lifting problem. This shows that p ′ is a trivial fibration.

The fact that the morphism p is a localization makes it easy to construct the extension
Fext in Theorem 3.4.1 by first extending F to the Čech nerves of coverings and notion that
the sheaf consition implies that this induces a functor on the localization Cov[R−1]. Let us
explain this in detail.

Proof of Theorem 3.4.1. 1. (Constructing the functor Fext)
We define a morphism

ϕ : Cov(StC)op
F
−→ Fun(N(∆),D)

i
−→ Fun(N(∆+),D)

res |[−1]
−−−−→ D

as follows:

(a) The map
F : Cov(StC)op → Fun(N(∆),D)

is the functor F applied to the restricted simplicial object X•,x of an object X+
•,x of

Cov(σ0).
(b) To associate limit diagrams to cosimplicial objects, we apply [Lur09, Corollary

4.3.2.16] which we recall in Proposition A.11.6. Let C(0) = N(∆) and C = N(∆+).
As D admits geometric realizations, we can apply Proposition A.11.6 to get a
morphism

i : Fun(N(∆),D)→ Fun(N(∆+),D).

On the level of objects, the morphism i sends a cosimplicial object to an augmented
cosimplicial object given by its limit diagram (Remark A.11.7).

(c) The map
res |[−1] : Fun(N(∆+),D)→ D

is induced by the inclusion map [−1] → ∆+. On the level of objects, it sends an
augmented cosimplicial object Y+• to Y−1.

For any object X+
•,x in Cov(StC), we claim that ϕ(X+

•,x)
∼= lim•∈∆ F(X•,x). This follows

from the sheaf condition, namely let X+
•,x and X ′+

•,x be two Čech nerves of two atlases
x : X→ X and x ′ : X→ X . Applying Lemma A.16.8 to the pullback square

X×X X
′ X

X ′ X ,

x

x ′

(3.12)

we get that the morphisms ϕ(X+
•,x) → ϕ(X+

•,x × X
′+
•,x) and ϕ(X+

•,x) → ϕ(X+
•,x × X

′+
•,x)

are equivalences because F satisfies descent along morphisms admitting T -local sections
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(Proposition 3.1.5). Morever if f : (X , x : X → X ) → (X , x ′ : X ′ → X ) is a mor-
phism in Cov(StC), then the above argument shows us that ϕ sends f to equivalences.
Thus ϕ maps every element of R to equivalences. As the morphism p is a localization
(Proposition 3.4.3), there exists a functor

Fext : N
D
• (StC)op → D

such that ϕ ∼= Fext ◦ p in Fun(Cov(StC)op,D). The equivalence ϕ ◦ Fext ◦ p gives us that
Fext(X ) can be computed as a simplicial limit over any Čech cover of an atlas admitting
T -local sections.

2. (Fext is an ∞-sheaf) For showing that Fext is an ∞-sheaf, we need to check that for
any morphism p : Y → X admitting T -local sections, p satisfies Fext-descent. Thus we
want to show that

Fext(X ) ∼= limn∈∆Fext(X+
•,p).

As p admits T -local sections, there exists a commutative diagram

Y Y

X X

q ′

p ′ p

q

where p ′ admits T -local sections and q ′, q ′ are atlases admitting T -local sections (Lemma 3.2.7).
By assumption, p ′ satisfies Fext-descent. Also q and q ′ satisfy Fext-descent by definition
of the functor Fext. Then applying Lemma A.16.8, we get that p satisfies Fext-descent.
This completes the proof.

3.5 Defining SH and derived categories of ℓ-adic sheaves for
algebraic stacks.

In this section, we apply Theorem 3.4.1 to extend the definition of SH(−) (Definition C.3.1)
from the level of schemes to algebraic stacks. To illustrate the idea, we also explain how the
same theorem allows to extend the definition of derived ∞-category of ℓ-adic sheaves from
schemes to stacks as explained in [LZ17].

3.5.1 The Derived ∞-category of ℓ-adic sheaves of an algebraic stack.
Let X be a scheme. There is a good notion of a derived category of ℓ-adic sheavesDet(X,Ql) on
a scheme X ([BS15]). Enhancing the notion of derived categories to the level of ∞-categories
([Lur17, Section 1.3]), one gets an étale sheaf

Det(−,Ql) : N(Sch)op → PrLstb

where the functor takes value in the ∞-category of presentable and stable ∞-categories. Let
us recall briefly the additional structure encoded in the statement that the functor takes
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values in PrLstb. Stable ∞-categories take the role triangulated categories, presentability is a
finiteness condition that is needed to apply the adjoint functor theorem and the superscript
L encodes the property that the pullback functors f∗ is colimit preserving.
We get the following corollary.

Corollary 3.5.1. The functor Det(−,Ql) extends to an ∞-sheaf

Det(−,Ql) : ND• (AlgSt)op → PrLstb

where St is the (2, 1)-category of algebraic stacks with smooth topology.
Morever, for any smooth atlas x : X→ X of an algebraic stack X , one has

Det(X ,Ql) ∼= lim( Det(X,Ql) Det(X×X X,Ql) · · · ) (3.13)

where the limit is over the Čech nerve of x.

Proof. We first construct the functor on the level of algebraic spaces.
Since PrLstb admits small limits (Proposition A.18.15), we can apply Theorem 3.4.1 to the étale
sheaf Det(−Ql) and StC := Algspet−loc = Algsp (as every algebraic space admits a surjective
étale covering by a scheme). Thus we get an ∞-sheaf Det(−,Ql) : N(Algsp)op → PrLstb on
(N(Algsp), et).
We now apply Theorem 3.4.1 again to the étale-sheaf Det(−,Ql) : N(Algsp)op → PrLstb and
StC := Algstet−loc = AlgSt to get an ∞-sheaf on (AlgSt, smooth).
The description of Det(X ,Ql) as a limit is a direct consequence of Eq. (3.10).

Remark 3.5.2. The above definition agrees with the definition of Liu and Zheng by [LZ17,
Proposition 5.3.5] which expresses their construction in terms of the Čech nerve of a covering
as in Eq. (3.10).
The construction using∞-categories has the advantage that the pullback functors f∗ are built
into the theory and thus avoid the technical problems with the lisse-étale topos (see [Ols05]).

3.5.2 The motivic stable homotopy category of an algebraic stack.
In [Rob15], Robalo explains that the construction of motivic stable homotopy theory ([MV99])
can be viewed as a functor taking values in ∞-categories.

Let Schfd denote the category of Noetherian schemes with finite Krull dimension. Robalo
uses the construction of SH to define a functor

SH⊗(−) : Schopfd → CAlg(PrLstb). [Rob14,Section 9.1] (3.14)

Let us unravel the information contained in this functor. As the classical SH admits a sym-
metric monoidal structure, the ∞-category SH⊗(S) is a symmetric monoidal ∞-category, i.e.
it comes equipped with a coCartesian fibration pS : SH⊗(S)→ N(Fin∗) (Definition B.1.1 and
Definition A.8.10) such that SH⊗(S)⟨n⟩ ∼= SH⊗(S)×n⟨1⟩ . Denote SH(S) := SH⊗(S)⟨1⟩. The
coCartesian fibration encodes the symmetric monoidal structure of the ∞- category SH(S)
in a coherent way.
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The∞-category SH(S) is also presentable as it arises from localization of presheaves of smooth
schemes over S ([Lur09, Theorem 5.5.1.1]). It is also a stable∞-category (Definition A.18.7) as
it inherits the triangulated structure of SH constructed in [MV99]. As pullback morphism for
a morphism f in Schfd is colimit preserving, the∞-category SH⊗(S) lands in the∞-category
of presentable stable symmetric monoidal ∞-categories which is denoted by CAlg(PrLstb).
The ∞-category SH(S) is the called the stable motivic homotopy category of S.
As explained in [Rob14, Remark 9.3.1], the stable motivic homotopy theory can be extended
to all schemes. The functor SH⊗(−) is a Nisnevich sheaf ([Hoy17, Proposition 6.24]).

Corollary 3.5.3. The functor SH⊗(−) extends to an ∞-sheaf

SH⊗
ext(−) : ND• (Nis-locSt)op → CAlg(PrLstb)

.

Morever, for any algebraic stack X ∈ ND• (Nis-locSt) that admits a schematic atlas x : X→
X , one has

SH⊗
ext(X ) ∼= lim

(
SH⊗(X) SH⊗(X×X X) · · ·

)
(3.15)

where the limit is over the Čech nerve of x.

Proof. The proof is similar to the case of Det(−,Ql). As CAlg(PrLstb) admit small limits
(Theorem B.2.8), we can apply Theorem 3.4.1 to the functor SH⊗(−) with T = Nis and
ND• (StC) = N(Algsp). This gives us an ∞-sheaf SH⊗

Algsp(−) : N(Algsp)op → CAlg(PrLstb).
Applying the theorem again to the ∞-sheaf SH⊗

Algsp(−) with N(C) = N(Algsp), T = Nis and
ND• (StC) = ND• (Nis-locSt), one gets an ∞-sheaf SH⊗

ext(−).
The limit description is a consequence of Eq. (3.10) applied to the functor SH⊗

ext(X ).

Notation 3.5.4. For any algebraic stack X ∈ Nis-locSt, we shall denote the underlying
presentable stable∞-category of the symmetric monoidal∞-category SH⊗

ext(X ) by SHext(X ).
We shall call SHext(X ) to be the stable motivic homotopy category of X .

Remark 3.5.5. Recall from Corollary 3.3.6 that for quotient stacks [X/G], the atlas X →
[X/G] does not admit Nisnevich-local sections and thus we need to replace it by X×G GLn to
compute SH⊗

ext.
In [Hoy17], Hoyois defines SH for global quotient stacks by tame reductive groups. His con-
struction a priori may depend on choice of presentation of the quotient stack. Our construction
has the advantage that it is independent of such a choice and it morever allows us to drop
the tameness assumption.

The description of the ∞-sheaf SH⊗
ext(−) gives us the following functors.

Notation 3.5.6. 1. Let f : X → Y be a morphism in ND• (Nis-locSt). We denote the
pullback functor SH⊗

ext(f) : SH⊗
ext(Y) → SH⊗

ext(X ) by f∗⊗. We shall also write f∗ :
SHext(Y) → SHext(X ) as the functor f∗⊗ on the level of underlying ∞-categories. As
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f∗ is a colimit preserving functor, the adjoint functor theorem ( [Lur09, Corollay 5.5.2.9]
which we recalled in Theorem A.15.9) says there exists a right adjoint

f∗ : SHext(X)→ SHext(Y)

which we call the pushforward functor.

2. As SH⊗
ext(X ) is a symmetric monoidal ∞-category, we shall denote the functor induced

by the symmetric monoidal structure by

−⊗− : SHext(X )× SHext(X )→ SHext(X ).

For a scheme X, the ∞-category SH⊗(X) is closed. Let us explain this notion briefly.
Given any two objects E and E ′ in SH(X), one has objects Hom(E, E ′) and Hom(E ′, E)
in SH(X) with maps Hom(E, E ′) ⊗ E → E ′ and Hom(E ′, E) ⊗ E ′ → E satisfying usual
universal properties. In other words, the tensor product realized as a functor SH(X ) →
Fun(SH(X),SH(X)) factorizes via FunL(SH(X),SH(X)) ([Lur17, Definition 4.1.15]). We have
the following proposition.

Proposition 3.5.7. [LZ17, Remark 1.5.3] For any X ∈ Nis-locSt, the ∞-category SH⊗
ext(X )

is closed.

Remark 3.5.8. Let x : X→ X be an atlas admitting Nisnevich-local sections. Then we have
a functor

p⊗ : N(∆)→ CAlg(PrLstb)

induced by the Čech nerve of x. As SH⊗(XnX ) is closed for every n. Then by [LZ17, Remark
1.5.3], we get that the limit of p⊗ i.e.. SH⊗

ext(X ) is closed.

Notation 3.5.9. For any objects E , E ′ ∈ SHext(X ), we shall denote HomSHext(X )(E , E ′) to
be the internal Hom.

Thus we have defined four functors f∗, f∗,− ⊗ − and Hom(−,−) along with the functor
SH⊗

ext(−). In the next chapter we explain how to construct f! for representable morphism of
algebraic stacks which are separated and finite type.
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CHAPTER 4

ENHANCED OPERATIONS FOR
STABLE HOMOTOPY THEORY OF

ALGEBRAIC STACKS

In the previous chapter, we have extended the stable homotopy functor SH from schemes to
algebraic stacks. We have also defined the four functors f∗, f∗,− ⊗ − and Hom(−,−). The
goal of this chapter is to construct the functors f!, f! and prove the base change and projection
formula (Theorem 4.1.1).

The key idea is to construct these functors and proving the above mentioned properties
via the enhanced operation map due to Liu and Zheng ([LZ17]). The enhanced operation map
is a functor which encodes all of this information. As SH for schemes satisfy relations among
six operations , the enhanced operation map can be constructed on the level of schemes (see
[Rob14, Section 9.4]). We shall extend the enhanced operation map from schemes to algebraic
stacks which shall prove the theorem.

Let us briefly outline the sections in the chapter. The first section states the theorem
and motivates the notion of an enhanced operation map. The second section introduces
the generalized notion of bisimplicial sets and marked simplicial sets which are convenient
to encode simplicial versions of the base change square. The third section introduces the
enhanced operation map of SH on the level of schemes and explain how it encodes all of
the properties that we want. In the last section, we prove the theorem by extending the
enhanced operation map to Nis-locSt. The proof of extension uses the same idea as the proof
of Theorem 3.4.1.
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4.1 Statement of the theorem and motivation for enhanced
operation map.

The extraordinary pushforward f! and extraordinary pull-back functors f! are defined for
morphisms of schemes that are separated and of finite type ([Rob14, Theorem 9.4.8]). We
will denote by Sch ′

fd ⊂ Schfd the category of schemes in which morphisms are separated and
of finite type. With this notation, the functors f! and f! can be assembled into functors

SH! : N(Sch ′
fd)→ PrLstb , SH! : N(Sch ′

fd)
op → PrRstb .

We shall denote by Nis-locSt ′ ⊂ Nis-locSt the subcategory in which morphisms are repre-
sentable and separated of finite type. Note that for a representable morphism, separated is
equivalent to the fact that the diagonal is a closed immersion ([Sta21, Tag 04YS]).

Theorem 4.1.1. The functors SH! and SH! extend to functors

SHext ! : N
D
• (Nis-locSt ′)→ PrLstb

and
SH!

ext : N
D
• (Nis-locSt ′)op → PrRstb .

These functors satisfy:

1. (Base change) Let
X ′ X

Y ′ Y

g ′

f ′ f

g

(4.1)

be a pullback diagram in Nis-locSt where f and f ′ are separated of finite type. Then the
diagram

SHext(X ) SHext(X ′)

SHext(Y) SHext(Y ′)

g
′∗

f! f ′!

g∗

(4.2)

commutes in CAlg(PrLstb). In other words we have an equivalence of functors

Ex(∆∗
#) : g∗ ◦ f! ∼= f ′! ◦ g ′∗

in the functor category Fun(SHext(X ),SHext(Y ′)).

2. (Projection formula) Let f : X → Y be a morphism in Nis-locSt ′. Given E ∈ SH(X )
and E ′ ∈ SH(Y), there exists an equivalence

f!(E⊗ f∗(E ′)) ∼= f!(E)⊗ E ′. (4.3)

Remark 4.1.2. To prove the theorem, it suffices to construct the functor SHext !. Given
SHext !, the functor SH!

ext can be defined by SH!
ext = (SHext !)

op : ND• (Nis-locSt)op →
(PrLstb)op ∼= PrRstb. The equivalence (PrLstb)op ∼= PrRstb follows from [Lur09, Corollary 5.5.3.4].
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We shall prove this theorem in Section 4.4. The proof of the theorem relies on extending
a special kind of map from schemes to algebraic stacks. We call this map the ”enhanced
operation map” due to Liu and Zheng ([LZ17]). The existence of the enhanced operation map
shall give us the lower shriek functors, base change formula and projection formula. We now
try to motivate the source and target of this map.

Let us first motivate the target. This comes from the projection formula. The projection
formula can viewed as a property in the ∞-category of module objects Mod(PrLstb). Let us
briefly recall the ∞-categorical analog of classical module categories i.e. Mod(PrLstb).

The objects of Mod(PrLstb) are pairs (C⊗,M) where C⊗ is a symmetric monoidal ∞-
category (i.e. an object in CAlg(PrLstb)) and M is a presentable stable ∞-category with a
morphism C ×M→M which incorporates the module structure of the object M (here C is
the underyling∞-category of C⊗). A morphism (C⊗,M)→ (C ′⊗,M ′) in Mod(PrLstb) consists
of morphisms of commutative algebra objects u : C⊗ → C ′⊗ and a morphism v : M→M ′ in
PrLstb which is C-linear where M ′ is endowed with a C⊗-module structure via u. In particular
for objects c ∈ C and m ∈M, one has an equivalence

v(c⊗m) ∼= u(c)⊗ v(m). (4.4)

We recall the precise definition of module objects in Definition B.4.3.

In the context of stable homotopy theory of schemes, a morphism f : X → Y induces a
monoidal pullback functor f∗⊗ : SH⊗(Y) → SH⊗(X). Then the pair (SH⊗(Y),SH(X)) is an
example of a module object. We can visualize this as an ∞-categorical generalization of the
statement that a morphism g : A → B of rings makes B an A-module. Also for any object
Z ∈ Schfd, the pair (SH⊗(Z),SH(Z)) is an object in Mod(PrLstb) (the module structure is
induced by the tensor product).

The projection formula is equivalent to the statement that the pair of morphisms

(id, f!) : (SH⊗(Y),SH(X))→ (SH⊗(Y),SH(Y)) (4.5)

is a morphism in Mod(PrLstb). This follows from the condition of module morphism (Eq. (4.4)
applied to v = f! and c = id) in this context. The above discussion motivates that Mod(PrLstb)
will be the target of the enhanced operation map.

Let us motivate the source of the enhanced operation map. As stated before, the map
encodes both the lower shriek functors and the base change formula. To combine these, one
defines a simplicial set where the 1-simplices are cartesian squares

X ′ X

Y ′ Y

g ′

f ′ f

g

(4.6)

where f (and thus f ′) is representable, separated and finite type.
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Thus the enhanced operation map is a functor from a simplicial set whose simplices con-
sists of pullback squares as above and takes values in Mod(PrLstb).

The source of the enhanced operation map naturally defines a bisimplicial set in which
vertical arrows are separated and finite type, which is called a bi-marked simplicial set ([LZ12,
Definition 3.9]). As the functor f! is usually constructed by combining constructions for open
embeddings and proper morphisms, it will be useful to have a more general notion of a multi-
simplicial set in which the class of arrows in some directions are restricted. Let us therefore
recall these notions from the article of Liu and Zheng ([LZ12, Section 3]).

4.2 Multisimplicial, multi-marked and multi-tiled simplicial
sets.

4.2.1 Multisimplicial sets.
Let I be a finite set and consider it as a discrete category.

Definition 4.2.1. [LZ12, Definition 3.1] An I-simplicial set is a functor:

Fun(I, ∆)op = (∆× ∆ · · ·∆︸ ︷︷ ︸
I-times

)op → Sets

We denote the category of I-simplicial sets by SetsI∆. If I = {1, 2, · · · , k}, then we denote it
by Setk∆.

Remark 4.2.2. By definition, Sets1∆ = Sets∆ and similarly Sets2∆ is the category of bisim-
plicial sets.

Notation 4.2.3. We shall denote any object (ni)i∈I of Fun(I, ∆) by n We denote ∆n to be
the I-simplicial set represented by

∏
i∆

ni . For an I-simplicial set, we denote Sn by S(n).

We discuss adjunctions between Setsk∆ and Sets∆.

Notation 4.2.4. [LZ12, Definition 3.3]

1. Denote f : I = {1, 2, · · · , k} → {1} be the projection map. This induces the functor
∆→ Fun(I, ∆) which induces the diagonal functor:

δ∗k : Setsk∆ → Sets∆

which takes an k-simplicial set S to δ∗k(S) which evaluated on [n] is S([n], [n], · · · [n]).
This functor has a right adjoint:

δk∗ : Sets∆ → Setsk∆

which evaluated on S, defines a k-simplicial set defined as

δk∗(S)n = HomSets∆(
∏
i∈I
∆ni , S)
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2. Similarly an injection of sets f : J ↪→ I induces a functor (∆f)
∗ : SetsJ∆ → SetsI∆ induced

from f. It has a right adjoint, which we denote by

ϵIJ : SetsI∆ → SetsJ∆

defined by
ϵIJ(S)(n) = S((n, 0))

where we write (n, 0) for the vector with entries 0 for i ̸= j. We call the map ϵIJ as
restriction functor.
If I = {1, 2, · · · , k} and J = {j}, then we denote it by ϵkj .

3. Given I = {1, 2, · · · , k} and J ⊂ I. We have the partial opposite functor

opIJ : Setsk∆ → Setsk∆

defined by taking opposite edges along the directions j ∈ J. Using this notion, we define
the twisted diagonal functor as

δ∗k,J := δ
∗
I ◦ opIJ : Setsk∆ → Sets∆ .

Example 4.2.5. 1. The map δ2∗ takes a simplicial set S to the bisimplicial set δ2∗S whose
(n1, n2) simplices are HomSet∆(∆

n1 × ∆n2 , S). If S = N(C) where C is an ordinary cat-
egory, then these are just n1 × n2 grids in C.
The map δ∗2 takes a bisimplicial set to its diagonal simplicial set. For S = δ2∗N(C), the
n-simplices of the simplicial set δ∗2(δ2∗N(C)) are morphisms ∆n × ∆n → N(C) (in other
words these are n× n grids in C).

2. The maps ϵ21 and ϵ22 send a bisimplicial set S ′ : (∆ × ∆)op → Sets to the simpicial
sets S ′|∆×[0] and S ′|[0]×∆ respectively, i.e.. these are the restrictions to the first row and
column of the bisimplicial set.

3. For k = 1, the twisted diagonal functor sends a simplicial set S to Sop.For k = 2, the
partial opposite functor op2

{1}
takes a bisimplicial set S and sends to the bisimplicial set S ′

which when restricted to direction 1 gives the simplicial set (ϵ21S)op and when restricted
to direction 2 gives the simplicial set ϵ22S. In order to understand it more clearly,
let us consider the bisimplicial set δ2∗N(C). Then the n simplices of the simplicial se
δ∗
2,{1}

(δ2∗N(C)) are given by n× n grids (∆n)op × ∆n → N(C).

4.2.2 Multi-marked and multi-tiled simplicial sets.

Definition 4.2.6. [LZ12, Definition 3.9] An I-marked simplicial set is the data (S, E := {Ei}i∈I)
where S is a simplicial set and E is a set of edges Ei containing every degenerate edge of S. A
morphism between I-marked simplicial sets (S, E) and (S ′, E ′) is a morphism of simplicial sets
f : X → X ′ with the property f(Ei) ⊂ E ′

i . We denote the category of I-marked simplicial sets
as SetsI+∆ . If I = {1, 2, · · · , k}, we denote the category of I-marked simplicial sets by Setsk+∆ .
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Remark 4.2.7. An I-marked simplicial set is said to be an I-marked ∞-category if the
underlying simplicial set is an ∞-category.
For k = 1, we get the notion of marked simplicial sets defined in [Lur17, Section 3.1].

Notation 4.2.8. 1. Given any I-simplicial set S, we can define an I-marked simplicial
set δ∗I+(S ′) = (δ∗IS

′, E = {(ϵIiS)1}i∈I). When k = 2, the marked simplicial set δ∗+2(S ′)
consists of the diagonal simplicial set of S ′ with the marked edges being the edges of
the simplicial set of the first row and first column of the bisimplicial set.

2. Given any I-marked simplicial set (S, E), we can define an I-simplicial set δI+∗ (S, E) as
the sub I-simplicial set of δI∗S which consists only of edges Ei in simplicial set ϵIi(S).

This notion yields us to define the notion of restricted simplicial nerve.

Definition 4.2.9. [LZ12, Definition 3.10] Let (S, E) be an I-marked simplicial set, then we
define the restricted I-simplicial nerve as

SE := δI+∗ (S, E)

Example 4.2.10. Let (S, E) = (N(Sch), {P,O}) where P and O are the set of proper mor-
phisms and open immersions respectively. Then SE is the bisimplicial subset of the bisim-
plicial set δ2∗N(Sch) which consists of only proper morphisms as edges in the simplicial set
ϵ21(δ

2
∗N(Sch)) and open immersions as edges in the simplicial set ϵ22(δ2∗N(Sch)).

Definition 4.2.11. [LZ12, Definition 3.12] An I-tiled simplicial set is the data (S, E =
{Ei}i∈I,Q = {Qij}i,j∈I,i̸=j) where (X, E) is a marked simplicial set and Q is a collection of set of
squares Qij (i.e. ∆1 × ∆1 → S) such that

1. the set of squares Qij and Qji are obtained from each other by transposition.

2. The vertical arrows of each square in Qij are in Ei and the horizontal arrows are in Ej.

3. To every edge in Ei, there is a square in Qij induced by the map id×s00.

A morphism of I-tiled simplicial sets f : (S, E ,Q) → (S ′, E ′,Q ′) which maps f(Ei) ⊂ E ′
i and

f(Qij) ⊂ Q ′
ij. We denote the category of I-tiled simplicial sets by SetsI�∆ .

Notation 4.2.12. [LZ12, Remark 3.13]

1. Given any I-simplicial set S, we define an I-tiled simplicial set δ∗I�(S) := (δ∗IS, E ,Q)
where E = {Ei = (ϵIiS

′)1}i∈I and Q = {Qij = Hom(∆1 × ∆1, δ∗2ϵIi,j(S))}i,j∈I,i̸=j.

2. Given any I-tiled simplicial set (S ′, E ′,Q ′), we define an I-simplicial set δI�∗ ((S ′, E ′,Q ′))
as the I-simplicial subset of δI+∗ (S ′, E ′) such that for j, k ∈ I and j ̸= k, every square in
the bisimplicial set ϵIjk(δI+∗ (S ′, E ′)) lies in Qjk.

Remark 4.2.13. In the above notation, let us explain what does a square in a bisimplicial
set means. Let S be a bisimplicial set. Given any (1, 1)-simplex of S, we can define a square
in the diagonal simplicial set δ∗2S as follows. A (1, 1)-simplex corresponds to a morphism
τ : ∆(1,1) → S. Applying the functor δ∗2(−), we get a morphism

δ∗2(τ) : ∆
1 × ∆1 → δ∗2S.
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If S = N(Sch ′)P,O, then a square in S corresponds to a morphism ∆1 × ∆1 → N(Sch ′) where
horizontal arrows are proper and vertical arrows are open.

Definition 4.2.14. [LZ12, Definition 3.16] Let C be and∞-category and E1, E2 be set of edges,
denote E1?cartE2 be the set of Cartesian squares. For an I-marked∞-category (C, E := {Ei}i∈I),
we denote Ecij := Ei ?cart Ej. Denote (C, E , Ec) to be the I-tiled ∞-category. We define the
Cartesian I-simplicial nerve to be the I-simplicial set

Ccart
E := δI�∗ ((C, E , Ec))

Example 4.2.15. The bisimplicial setN(Sch)cart
P,O is the sub-bisimplicial set of δ2∗N(Sch) which

consists of proper morphisms as edges in one direction, open immersions as edges in other
and every square formed by open and proper morphisms is a pullback square.

Let us understand the simplicial set δ∗kN(C)cart
E which will be the source of the enhanced

operation map. A n-simplex of δ∗kN(C)cart
E is a morphism σn : ∆n × ∆n · · · × ∆n︸ ︷︷ ︸

k-times

→ N(C)

such that every edge σn|i : ∆1 → N(C) in direction i lies in Ei for every i ∈ I and for every
j ̸= j ′ ∈ I, the square σn|j,j ′ : ∆1 × ∆1 → N(C) is a pullback square formed by edges Ej and
Ej ′ . In case k = 2 and (C, E) = (Sch, {P,O}), the n-simplices of δ∗2N(Sch ′)cartP,O are n× n grids
of the form

X00 X01 · · · X0n

X10 X11 · · · X1n

...
...

...
...

Xn1 Xn2 · · · Xnn

(4.7)

where vertical arrows are open, horizontal arrows are proper and each square is a pullback
square.

Notation 4.2.16. Let (N(C), {E1, E2}) be a marked ∞-category. For any i = 1 or 2, let
N(CEi) be the subcategory of N(C) spanned by edges in Ei. Then we have a natural map

dirEi : N(CEi)→ δ∗2N(C)cart
E

which on the level of 1-simplices sends a morphism f : X→ Y to a square of the form

X Y

X Y.

f

id id
f

(4.8)

We call the map dirEi as the restriction map along direction i.
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4.3 The enhanced operation map for SH(X).
In this section, we introduce the enhanced operation map on schemes. Let us first introduce
the formal setup of the enhanced operation map as mentioned in [Rob14, Section 9.4].

4.3.1 Setup of the enhanced operation map.

Notation 4.3.1. Let Schfd be the category of Noetherian schemes of finite Krull dimension
Let

D⊗ : N(Schfd)op → CAlg(PrLstb)

be a functor. The underlying ∞-category of the symmetric monoidal ∞-category D⊗(X) is
denoted by D(X). For a morphism of schemes f : X→ Y, we shall denote the pullback functor
D(f) : D(Y)→ D(X) by f∗. It is a colimit preserving functor. Thus by adjoint functor theorem,
there exists a right adjoint f∗. We assume the functor D has the following properties:

1. For any smooth morphism of finite type f, f∗ has a left adjoint f# such that:

(a) (Smooth projection formula) For any E ∈ D(Y) and B ∈ D(X), the natural map
formed by adjunction

f#(E⊗ f∗(B))→ f#E⊗ B (4.9)

is an equivalence.
(b) (Smooth base change) For a cartesian square of schemes

X ′ Y ′

X Y

f ′

g ′ g

f

(4.10)

with f smooth of finite type, the commutative square

D(X ′) D(Y ′)

D(X) D(Y)

{f ′}∗

{g ′}∗

f∗

g∗ (4.11)

is horizontally left-adjointable ([Lur17, Definition 4.7.4.13] which we recall in Def-
inition A.13.3), i.e.. there exists a commutative square

D(X ′) D(Y ′)

D(X) D(Y)

{f ′}#

{g ′}∗

f#

g∗ (4.12)

2. For f : Y → X a proper morphism of schemes, f∗ admits a right adjoint functor f∗ with
the following properties:
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(a) (Proper projection formula) For E ∈ D(Y) and B ∈ D(X), the natural map

f∗(E)⊗ B→ f∗(E⊗ f∗(B)) (4.13)

is an equivalence.
(b) (Proper base change) For the cartesian square in Eq. (4.10), the induced pullback

square Eq. (4.11) is horizontally right adjointable. In other words, the square
commutes

D(X ′) D(Y ′)

D(X) D(Y)

f ′∗

{g ′}∗

f∗

g∗ (4.14)

3. (Support property) For a cartesian diagram of schemes in Eq. (4.10) where f is an open
immersion and g is an proper,the commutative diagram in Eq. (4.12) written as square

D(X) D(Y)

D(X ′) D(Y ′)

f#

{g ′}∗ g∗

{f ′}#

(4.15)

is horizontally right adjointable, i.e. the square

D(X ′) D(Y ′)

D(X) D(Y)

{f ′}#

g ′
∗ g∗

f#

(4.16)

commutes.

Example 4.3.2. The functor SH⊗ satisfies the conditions of Notation 4.3.1 ([Rob14, Example
9.4.6]).

Notation 4.3.3. Let
Y0 Y1

X0 X1

u

f0 f1

v

(4.17)

be an edge in Fun(∆1,Schfd). We want to denote some specific collection of edges in
Fun(∆1,N(Schfd)) as follows:

1. F := all such squares such that u and v are separated morphisms of finite type.

2. ALL := all edges in Fun(∆1,N(Schfd)).

Theorem 4.3.4. [LZ17, Section 3.2] Given a functor D⊗ : N(Schfd)op → CAlg(PrLstb) which
satisfies properties in Notation 4.3.1, then there exists an enhanced operation map

EO(D⊗) : δ∗2,{2} Fun(∆1,N(Schfd))cart
F,ALL → Mod(PrLstb). (4.18)
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which when restricted to direction F, gives us the lower shriek functor SH!. Morever, we get the
projection and base change formulas by evaluating at specific simplicies of
δ∗
2,{2}

Fun(∆1,N(Schfd))cart
F,ALL.

Remark 4.3.5. 1. The above theorem can be applied to the functor D⊗ = SH⊗ as SH⊗

satisfies all conditions of Notation 4.3.1. This constructs the lower shriek functors,
projection formula and base change (see [Rob14, Theorem 9.4.36]).

2. The enhanced operation map takes values in Mod(PrLstb) as we wanted. Let us try
to explain the source of enhanced operation and justify the motivation that we gave
in the beginning of this chapter. In order to encode the module objects, the source
consists morphisms of schemes as objects. Hence this motivates considering the functor
category Fun(∆1,Sch). The functor δ∗

2,{2}
(−) encodes pullback squares as 1-simplices as

we explained. Taking opposite direction along {2} is motivated from the fact that the
pullback functor is contravariant.

3. The construction of the enhanced operation map is technical and is recalled in Ap-
pendix D.3. It involves the theorem of partial adjoints ([LZ17, Proposition 1.4.4]) and∞-categorical gluing for compactifiable morphisms ([LZ12, Theorem 0.1]). We recall
both of the theorems and give a brief idea of proof of gluing in Appendix D.1. In the
next section we explain how the enhanced operation map is defined on 0 and 1-simplices.
The description of EO(D⊗) on lower simplices shall help us to understand how the lower
shriek functors, projection formula and base change are encoded in EO(D⊗).

4.3.2 Understanding the map EO(D⊗).
Let us explain the map EO(D⊗) on the level of 0 and 1 simplices. The 0 and 1 simplices of
δ∗
2,{2}

(Fun(∆1,N(Schfd)))F,ALL are:

1. 0- simplices are maps of schemes f : Y → X.

2. A morphism from f0 : Y0 → X0 to f3 : Y3 → X3 is a morphism of the form ∆1 × ∆1 →
Fun(∆1,N(Schfd)) with conditions of edges and pullback squares. Explicitly, it is a cube
of the form

Y0 Y1

Y2 Y3

X0 X1

X2 X3

f0

v ′

u ′ u

f1

f2

v

f3
p ′

q ′

p

q

(4.19)

where the diagonal maps are separated morphisms of finite type and the top and bottom
squares are cartesian. The horizontal squares are considered on the opposite direction.

In general, n-simplices of the source of EO(D⊗) are maps

Fn : ∆n × (∆n)op × ∆1 → Schfd
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such that Fn|∆n×(∆n)op×{i} for i = 0, 1 determines an n-simplex in δ∗
2,{2}

(Schfd)cart
F ′,ALL ′ where F ′

is set of edges which are separated and finite type and ALL ′ are all morphisms of schemes.

Let us explain what EO(D⊗) does on the level of 0 and 1 simplices.

1. EO(D⊗)(f) := (D⊗(X),D(Y)) where f : Y → X is an arbitrary morphism of schemes.
Here D(Y) is a D⊗(X)-module via f∗.

2. For a cube of the form Item 2, EO(D⊗) sends the cube to a morphism of modules

(D(X0)
⊗,D(Y0))→ (D(X3)

⊗,D(Y3)).

This shall help us to encode the projection formula which is a statement formulated as
morphism of modules.

4.3.3 Extraordinary pushforward, base change and projection formula.
Now we explain how the extraordinary pushforward, projection formula and base change are
encoded in the map EO(D⊗).

1. The enhanced pullback: The map EO(D⊗) encodes the map D⊗. When restricted
the map along the direction ALL (Notation 4.2.16), then the induced map

EO(D⊗)∗ : Schopfd
X→(X→Spec Z)
−−−−−−−−−−→ Fun(∆1,Schfd)op

EO(D⊗)◦dirALL
−−−−−−−−−−→ Mod(PrLstb)

sends a scheme X to the module object (D⊗(X),D(X)) and sends a morphism of schemes
f : X→ Y to the pullback morphism

(id, f∗) : (D⊗(Spec Z),D(Y))→ (D⊗(Spec Z),D(X)).

This is called the enhanced pullback map. Restricting it to the first coordinate, we get
the map

D : Schopfd → PrLstb .

2. The extraordinary pushforward: We have a canoncial map

dirF : Fun(∆1,Sch ′
fd)→ δ∗2,{2}(Fun(∆1,Schfd))cart

F,ALL

which is the restriction direction along F (Notation 4.2.16).
This induces the map

EO(D⊗)! : Sch ′
fd → Fun(∆1,Sch ′

fd)
EO(D⊗)◦dirF
−−−−−−−−→ Mod(PrLstb)

where the first map is induced by X→ (X→ Spec Z).
Combining with the description of EO(D⊗) in Section 4.3.2, the map EO(D⊗)! sends a
morphism g : Y → X in Sch ′

fd to a morphism of modules

(id, g!) : (D⊗(Spec Z),D(Y))→ (D⊗(Spec Z),D(X)).
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We call EO(D⊗)! the enhanced extraordinary pushforward map.
Via the restriction functor Mod(PrLstb) → CAlg(PrLstb), we get the extraordinary push-
forward functor

SH! : Sch ′
fd → PrLstb

which sends a morphism f : X→ Y to the functor f! : SH(X)→ SH(Y).

3. Projection formula: For f : Y → X be a separated and finite type morphism, consider
the cube:

Y Y

X X

X X

X X

f

f

id

f

f

id

id

id
id

id

id

id

(4.20)

Evaulating EO(D⊗) (using the description in Section 4.3.2) on this cube yields a mor-
phism of modules

(id, f!) : (D⊗(X),D(Y))→ (D⊗(X),D(X))

where D(Y) is a D(X)⊗-module via f∗ and D(X) is a D(X)⊗-module via the tensor
product. This equivalent to the module homomorphism (Eq. (4.4)) explained in the
beginning of the chapter and hence it gives us the projection formula.

4. Base change: Consider the cartesian square of schemes

X ′ Y ′

X Y

f ′

g ′ g

f

(4.21)

where f and f ′ are separated morphism of finite type. Let us explain how the map
EO(D⊗) encodes the base change.
The above pullback square gives us a 1-simplex γ in δ∗

2,{2}
Fun(∆1,Schfd)cart

F,ALL which is
cube:

X ′ Y;

X Y

Spec Z Spec Z

Spec Z Spec Z

g ′

f ′

g

f (4.22)

The above 1-simplex gives us two 2-simplicies σ and τ in

δ∗2,{2} Fun(∆1,Schfd)cart
F,ALL
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which are morphisms
∆2 × (∆2)op × ∆1 → Schfd

whose upper 3× 3 grids are:

(a)

σ|∆2×∆2×{0} :=

Y ′ Y ′ X ′

Y Y X

Y Y X

g g
f ′

g ′

f

f

(4.23)

(b)

τ|∆2×∆2×{0} :=

Y ′ X ′ X ′

Y ′ X ′ X ′

Y X X

f ′

g
f

g ′ g ′

f

(4.24)

As d21(σ) = d21τ) = γ,
We have

EO(T ⊗)(γ) ∼= EO(D⊗)∗(g) ◦ EO(D⊗)!(f) = (id, g∗ ◦ f!)

and
EO(T ⊗)(γ) ∼= EO(D⊗)!(f

′) ◦ EO(D⊗)∗(g ′) = (id, f ′! ◦ g ′∗).

Restricting to the second coordinate, we have

f! ◦ g∗ ∼= g ′∗ ◦ f ′!

which is the base change formalism.

4.4 Proof of Theorem 4.1.1.
Let us denote the collection of squares (i.e. morphisms in Fun(∆1,ND• (Nis-locSt)))

X0 X1

Y0 Y1

f

f ′

(4.25)

where f and f ′ are separated of finite type by F ′. The idea of the proof of Theorem 4.1.1 is
the following:
Suppose we construct a morphism

EO(SH⊗
ext) : δ

∗
2,{2} Fun(∆1,ND• (Nis-locSt))F ′,ALL → Mod(PrLstb) (4.26)
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which extends EO(SH⊗), then the discussion in Section 4.3.3 gives us the lower shriek functor,
projection formula and base change for our functor SH⊗

ext. Thus proving Theorem 4.1.1 is
reduced to extending the functor EO(SH⊗) to Nis-locSt. We extend the functor in a two step
process as we did for extending SH from schemes to algebraic stacks. Thus we formulate a
proposition in setting of category of stacks admitting T -local sections (Definition 3.2.1).

4.4.1 Extending the EO map from schemes to algebraic stacks.
As explained before, we prove the proposition which helps us to extend the enhanced operation
map from schemes to algebraic stacks. The proposition is a special case of the DESCENT
program stated in [LZ17, Theorem 4.1.8]). Our proof is inspired from the proof of Liu and
Zheng and give a new proof of the theorem. Before stating the proposition, let us fix notations
in the context of category of stacks admitting T -local sections.

Notation 4.4.1. Let E ′ be a collection of edges in ND• (StC) which are representable in C,
stable under pullback and compositions. We denote the collection of edges in E ′ which are in
C by E .
We shall denote the collection of commutative squares

X0 X1

Y0 Y1

f

v ′

f ′v

(4.27)

where f, f ′ ∈ E ′ by F ′. The collection of all such pullback squares in C shall be denoted by F.
We assume that there exists a functor

EO(D⊗) : EO(C) := δ∗2,{2} Fun(∆1,N(C))cartF,ALL → Mod(PrLstb)

which when restricted to the direction ALL gives an ∞-sheaf

D ′⊗ : Fun(∆1,N(C))op → Mod(PrLstb)

with respect to the topology induced by T on the functor category in a canonical way (the
coverings on a object in Fun(∆1,N(C)) are given by commutative squares in C where the
vertical arrows are coverings).

Proposition 4.4.2. The functor EO(D⊗) extends to a functor

EO(D⊗
ext) : EO(StC) := δ∗2,{2} Fun(∆1,ND• (StC))F ′,ALL → Mod(PrLstb). (4.28)

Idea of the proof: The proof is similar to the proof of Theorem 3.4.1.

We shall denote the simplicial set δ∗
2,{2}

Fun(∆1,Cov(StC))F ′,ALL by EOCov(StC). We also
denote the projection map

EOCov(StC)→ EO(StC)

induced by the map p : Cov(StC)→ ND• (StC) by pEO.
The following claim implies that the morphism pEO is surjective on every simplex.
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Claim 4.4.3. Let τn be a morphism τn : ∆n × ∆n → ND• (StC) which is an n-simplex of
δ∗
2,{2}

(ND• (StC))cartF ′,ALL. Then there exists a map

τ1n : ∆1 × ∆n × ∆n → ND• (StC)

such that

1. τ1n|[0]×∆n×∆n is a n-simplex of δ∗
2,{2}
N(C)cartF,ALL,

2. τ1n|[1]×∆n×∆n = τn and

3. τ1n : [k]× [i]× [j] :→ ND• (StC) is a Čech nerve of a morphism admitting T -local sections
for all 0 ≤ i, j ≤ n and 0 ≤ k ≤ 1.

The claim implies surjectivity of pEO because one can apply the claim to upper and lower
pullback squares of any n-simplex of δ∗

2,{2}
Fun(∆1,ND• (StC))cartF,ALL. By taking fiber products,

this produces an edge in Fun((∆n)op × ∆n,Fun(∆1,ND• (StC). Considering the Čech nerve of
the edge gives us an n-simplex of EOCov(StC).

Proof. We prove it for n = 1. The case of higher n follows from induction choosing a
compatible choice of atlas. We want to show that for a pullback square of the form

X1 X3

X0 X2

f0

g1

f2

g0

(4.29)

in StC where f0 and f2 are in E ′, there exists a cube of the form

X1 X3

X1 X3

X0 X2

X0 X2

f ′
0

h1 h3

f ′
2

f0 f2
h0 h2

g0

(4.30)

where the square formed by vertices of X0, X1, X2 and X3 is a pullback square, f ′0, f ′2 ∈ E and
h0, h1, h2, h3 are atlases admitting T -local sections.

Let h0 : X0 → X0 be an atlas admitting T -local sections. By Claim 3.4.2, there exists a
commutative square of the form

X0 X2

X0 X2

h0 h2 (4.31)
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where h0 and h2 are atlases admitting T -local sections. As f0 is representable, the base change
morphism h1 : X1 := X0×X0

X1 → X1 is an atlas admitting T -local sections. Also f ′0 : X1 → X0
lies in E . Then defining X3 := X1 ×X0

X2 gives us the cube that we wanted.

We shall denote the collection of edges in Fun(∆1,Cov(StC)) (i.e. morphisms of the form
∆1 × ∆1 → StC) which are of the form:

(X , x : X→ X ) (X , x ′ : X ′ → X )

(Y, y : Y → Y) (Y, y ′ : Y ′ → Y)

f

f ′

(4.32)

by R ′. We shall also denote the simplicial set δ∗
2,{2}

Fun(∆1,Cov(StC))[R−1]cartF ′,ALL by
EOCov(StC)[R ′−1]. We have the following claim.

Claim 4.4.4. The map
p ′
EO : EOCov(StC)[R ′−1]→ EO(StC)

induced by the map p ′′ : Fun(∆1,Cov(StC))[R−1] → Fun(∆1,ND• (StC)) is categorical equiva-
lence of simplicial sets.

Proof. Following the arguments in the proof of Theorem 3.4.1, we see that the map p ′′ is a
categorical equivalence. Thus it admits a categorical inverse q ′′. It can be easily verified that
q ′′ sends pullback squares to pullback squares. Thus the map q ′′ induces a map

q ′
EO : EO(StC)→ EOCov(StC)[R ′−1].

As q ′′ ◦ p ′′ = idFun(∆1,StC), we have p ′
EO ◦ q ′

EO = idEO(StC). On the other hand, we see that
q ′
EO ◦ p ′

EO is preisomorphic to idEOCov(StC)[R ′−1] in the sense of [Rez, 21.4]. Thus by [Rez,
Lemma 21.8], we get that p ′

EO is a categorical equivalence.

We also prove another claim regarding the monomorphism

iEO : EOCov(StC) ↪→ EOCov(StC)[R ′−1].

Claim 4.4.5. Let E be an ∞-category and let F : EOCov(StC)→ E be a functor which maps
R ′ to equivalences. Then F extends to a functor F ′ : EOCov(StC)[R ′−1]→ E .

Proof. We construct the functor F ′ inductively. As objects of EOCov(StC)[R ′−1] are same as
objects of EOCov(StC), we define F ′ as F.
Assume we have defined F ′ upto n− 1 simplices. Let σn be an n-simplex of EOCov(StC). By
induction, the boundary of σn maps to a morphism F ′(∂(σn)) : ∂∆

n → D.
We denote the image of σn via p ′

EO by σ ′
n. As pEO is surjective on each simplex, this lifts to

an element σ ′′
n : ∆n → EOCov(StC). Following the arguments of Proposition 3.4.3, we get a

morphism
τn : ∂∆n × ∆1

∐
∂∆n×{0}

∆n → D

where
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1. τn|[0]×∆n = F(σ ′′
n).

2. τn|[1]×∂∆n = F ′(∂(σn)), and

3. τn|∆1×[k] is an equivalence for all 0 ≤ k ≤ n.

As explained in Proposition 3.4.3, this morphism extends to a morphism

τ ′n : ∆n × ∆1 → D.

The morphism τ ′n when restricted to ∆n × [1] gives us the morphism

F ′(σn) : ∆
n → D.

This completes the proof of induction and hence the claim.

Proof of Theorem 4.1.1. We define a morphism

φ : EOCov(StC)
EO(D⊗)
−−−−−→ Fun(N(∆),Mod(PrLstb))

res[−1] ◦i
−−−−−→ Mod(PrLstb) (4.33)

as follows:

1. Note that we have a canonical morphism

EOCov(StC)→ Fun(N(∆),EO(C)).

The morphism EO(D⊗) is the functor EO(D⊗) applied to Fun(N(∆),EO(C)).

2. The maps i and res[−1]×∆n are the same maps that we defined in the construction of ϕ
in Theorem 3.4.1. The functorial association of limit is possible as Mod(PrLstb) admits
small limits (Theorem B.2.8).

Similar to the arguments in Theorem 3.4.1, we see that the morphism φ sends R to
equivalences. By Claim 4.4.5, this induces a map

φ ′ : EOCov(StC)[R−1]→ Mod(PrLstb).

By Claim 4.4.4, this induces a morphism

EO(D⊗
ext) : EO(StC)→ Mod(PrLstb).

It is automatically clear that this an extension of the morphism EO(D⊗). This completes the
proof.

Remark 4.4.6. The functor EO(D⊗
ext) when restricted to direction ALL is indeed the functor

D ′⊗
ext obtained by applying Theorem 3.4.1 to functor D ′⊗).
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4.4.2 Conclusion of proof of Theorem 4.1.1.
To conclude the proof, we apply Proposition 4.4.2 to the functor EO(SH⊗) and F ′ to be
collection of morphisms which are representable, separated and finite type. We first extend
the functor to the category of algebraic spaces. Then, we apply it again to extend it to the
(2, 1)-category Nis-locSt.

Thus this gives us the enhanced operation map

EO(SH⊗
ext) : δ

∗
2,{2} Fun(∆1,ND• (Nis-locSt))cartF ′,ALL → Mod(PrLstb). (4.34)

The composition

ND• (Nis-locSt)op dirALL ◦(X→(X→Spec Z))
−−−−−−−−−−−−−−−−−→ δ∗2,{2} Fun(∆1,ND• (Nis-locSt))cartF ′,ALL

EO(SH⊗
ext)−−−−−−−→ Mod(PrLstb)

(4.35)
sends X to (SH⊗

ext(Z),SHext(X )) and it sends morphisms f : X → Y to the pair of morphisms
(id, f∗) : (SH⊗

ext(Z),SHext(Y))→ (SH⊗
ext(Z),SHext(X )).

As explained in Section 4.3.3, the functor EO(SH⊗
ext) induced by restricting along direction

F ′ gives us the functor

SHext ! : N
D
• (Nis-locSt ′)→ PrLstb . (4.36)

which extends SH!.

The projection and base change formulas also follow from EO(SH⊗
ext) as explained in be-

ginning of Section 4.4 and Section 4.3.3. This completes the proof of Theorem 4.1.1.
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CHAPTER 5

SIX OPERATIONS FOR SH(X )

In the previous two chapters, we have extended the motivic homotopy functor from schemes
to algebraic stacks and constructed the six functors. In this chapter, we prove other relations
of six operations: homotopy invariance, localization and purity.

In the first section, we state results of smooth and proper base change theorems in our
context. In the second section, we prove the theorems of localization and homotopy invariance.
In the third section, we construct the natural transformation αf. In the fourth section, we
construction the purity transformation ρf. In the last section, we summarize all the results
and state in a single theorem.

5.1 Smooth and proper base change.

In this section, we prove smooth and proper base change theorems. Theorem 4.1.1 constructs
the lower shriek functors for representable morphisms and separated of finite type, in par-
ticular for smooth and proper morphisms. On the level of schemes, for a smooth morphism
f : X→ Y, the pullback morphism F∗ : SH(Y)→ SH(X) admits a left adjoint f#. It is natural
to expect such a result in the context of SH⊗

ext of Nis-locSt.

Lemma 5.1.1. Let X ∈ Nis-locSt and x : X→ X be a smooth atlas which admits Nisnevich-
local sections. Then the pullback map x∗ : SHext(X )→ SHext(X) is conservative.

Proof. This is a consequence of [Lur17, Proposition 4.7.5.1] applied to the J = N(∆+) and
q : N(∆)→ Ĉat∞ which is the functor SH⊗

ext applied to simplicial object X•
x. We get that the

functor G := x∗ : SHext(X )→ SHext(X) is conservative.

Proposition 5.1.2. (Smooth base change) Let f : Y → X be a representable smooth morphism
in Nis-locSt. Then f∗ admits a left adjoint f#. Morever for a cartesian square in Nis-locSt
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of the form
X ′ Y ′

X Y

f ′

g ′ g

f

(5.1)

where f (and thus f ′) is smooth, we have an equivalence

Ex(∆∗
#) : f∗g# ∼= g ′

#f
′∗.

Proof. The proof of the proposition uses the theory of left and right adjointable squares and
A.13.6. Let x : X→ X be an atlas admitting Nisnevich-local sections. Then y : X×X Y → Y
is an atlas admitting T -local sections. Taking Čech nerves of x and y, produces a morphism

H : N(∆)op × ∆1 → ND• (StC)

whereH|[0]×∆1 = f ′ (where f ′ is base change of f along x), H|N(∆+)op×[0] = X
•
x andH|N(∆+)op×[1] =

Y•y.
Composing with the functor SHext : N

D
• (StC)op → PrLstb ↪→ Ĉat∞, we get a functor

H : N(∆)→ Fun(∆1, Ĉat∞)

As f# is left adjoint of f∗ on the level of schemes and we have smooth base change (see [Rob14,
Example 9.4.8] which we recalled in Proposition C.4.1), this implies that the functor H can
be realized as functor:

H : N(∆)→ FunLAd(∆1, Ĉat∞)

where FunLAd(∆1, Ĉat∞) is the ∞-category of left adjointable functors ([Lur17, Definition
4.7.4.13]). As FunLAd(∆1, Ĉat∞) admits small limits ([Lur17, Corollary 4.7.4.18]), the map H
admits a limit

H : N(∆+)
op → FunLAd(∆1, Ĉat∞).

Evaluating H ′ at [−1], we get the morphism

f∗ : SHext(Y)→ SHext(X )

which is an element of FunLAd(∆1, Ĉat∞). By definition of ∞-category of left adjointable
functors, we get that f∗ admits a left adjoint

f# : SHext(X )→ SHext(Y).

It remains to prove the smooth base change. Let us denote the cartesian square in the
proposition as a morphism σ : ∆1 × ∆1 → ND• (StC) Let y : Y → Y be an atlas admitting T -
local sections. By Claim 3.4.2 and the fact that pullback of representable smooth morphism
is smooth, we get a morphism

G ′ : N(∆+)
op × ∆1 × ∆1 → C

such that
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1. G ′|[−1]×∆1×∆1 = σ.

2. G ′
N(∆+)op×[k]×[j] is Čech nerve of an atlas of σ([k], [j]) admitting Nisnevich-local sections

for all 0 ≤ j, k ≤ 1.

Composing with SH(−), we get a functor

G : N(∆)× ∆1 × ∆1 → Ĉat∞.
For every τ : ∆1 → N(∆)× ∆1, the induced square

G ◦ (τ× ∆1) : ∆1 × ∆1 → Ĉat∞
is left adjointable by smooth base change theorem on the level of schemes ([Rob14, Example
9.4.8]). Applying [LZ17, Lemma 4.3.7] to the functor G, we get that the square

SHext(Y) SHext(X )

SHext(Y ′) SHext(X ′)

f∗

g∗ g ′∗

f ′∗

(5.2)

is the left adjointable, i.e.. we have

Ex(∆∗
#) : g ′

#f
′∗ ∼= f∗g#.

Remark 5.1.3. The lower shriek functor on the level of schemes agrees with (−)# for open
immersions and (−)∗ along proper morphisms ([Rob14, Theorem 9.4.8]). As the lower shriek
functor on the level of algebraic stacks is constructed by taking limit along Čech covers of
atlases, we get that for an open immersion j : X ′ → X , we have an equivalence j! ∼= j# and
for representable proper morphisms p : X ′′ → X , we have an equivalence p! ∼= p∗.

A similar proposition holds in the case of representable proper morphisms.

Proposition 5.1.4 (Proper base change). Given a cartesian square in Nis-locSt of the form

X ′ Y ′

X Y

f ′

g ′ g

f

(5.3)

where g (and thus g ′) is representable and proper, we have an equivalence

Ex(∆∗
∗) : f

∗g∗ ∼= g ′
∗f

′∗.

Proof. As f∗ ∼= f! when f is representable and proper, the proper base change is indeed the
base change with respect to lower shriek functor. This holds due to Theorem 4.1.1.
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5.2 Localization and homotopy invariance.
In this section we prove the localization theorem and homotopy property.

Proposition 5.2.1. (Localization) If i : Z → X is a closed immersion with complementary
open immersion j : U := X− Z ↪→ X , we have the cofiber sequences:

1.
j!j

! → id→ i∗i
∗ (5.4)

2.
i!i

! → id→ j∗j
∗ (5.5)

Proof. We prove the existence of the first cofiber sequence. The second cofiber sequence is
dual to the first one. Let x : X→ X be an atlas admitting Nisnevich-local sections.
Then the restriction of x to Z and U defines atlases z : Z → Z and u : U → U and these
induce morphism of the Čech nerves Z+

•,z → X+
•,x and U+

•,u → X+
•,x. Thus we have morphisms

ZnZ ↪→ XnX and UnU ↪→ XnX which are closed and open immersions respectively for every n.
Let E ∈ SHext(X ), then E = (En)n∈∆ where En ∈ SH(XnX ).

For any n, we have a square which is a fiber sequence

jn#j
∗
n(En) En

0 in∗i
∗
n(En)

(5.6)

in SH(XnX ), because localization holds for schemes ([Rob14, Theorem 9.4.25]).

This can be visualized as a limit map

Hn : Λ20
▹ → Cat∞

where
Hn : Λ20 → Ĉat∞

Also, we have a morphism H−1 : Λ
2
0 → Ĉat∞ given by the diagram

E

0 i∗i
∗E

(5.7)

The collection of maps Hn for every n ≥ −1 induces a morphism

H : Λ20 → Fun(N(∆s+), Ĉat∞)

where for every [n] ∈ ∆s+, H|[n] := Hn. As Fun(N(∆s+), Ĉat∞) admits all limits, there exists
an extension of H to

H : ∆1 × ∆1 ∼= Λ2▹0 → Fun(N(∆s+), Ĉat∞).
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The morphism H is evaluated at [−1] ∈ ∆s+ gives us a square

H|[−1] : ∆
1 × ∆1 → Ĉat∞.

As smooth pullbacks commute with (−)#, (−)∗, we have j#j∗(E) ∼= (jn#j
∗
n(En))n∈∆ and

i∗i
∗(E) ∼= (in∗I

∗
n(En))n∈∆. Thus the morphism H ′|[−1] is the pullback square

j#j
∗(E) E

0 i∗i
∗(E).

(5.8)

This proves the localization theorem.
The same argument works for the dual sequence 2.

Proposition 5.2.2. (Homotopy invariance) For any stack X ∈ Nis-locSt, the projection
π : A1X → X induces a fully faithful functor pi∗(−) : SHext(X )→ SHext(A1X )

Proof. To show that π∗X is fully faithful, we need to show that the unit transformation
u : π#π

∗ → id is an equivalence. As π# satisfies projection formula, we are reduced to
showing u(1X ) : π#π

∗(1X )→ 1X is an equivalence.

Fixing the usual atlas x : X→ X , let π0 : A1X → X be the projection map. As SH satisfies
homotopy invariance on the level of schemes, we have an equivalence u0(1X) : π0#π∗0(1X)→ 1X.
As (−)# commutes with pullbacks, we get that pullback of u(1X ) along x∗ is u0(1X). As x∗ is
conservative (Lemma 5.1.1) and u0(1X) is an equivalence, we get that u(1X ) is an equivalence.

5.3 The natural transformation αf.
In this section, we construct the natural transformations αf and which is extensions of the nat-
ural transformation of the same notation on the level of schemes ([CD19, Proposition 2.2.10]).
We construct the natural transformation for a specific class of morphisms in Nis-locSt.

Definition 5.3.1. A representable morphism f : X → Y in Nis-locSt is compactifiable if
admits a factorization of the form X j

−→ X p
−→ Y where j is an open immersion and p is a

proper representable morphism of algebraic stacks.

Example 5.3.2. Open immersions and representable proper morphisms are compactifiable.

Proposition 5.3.3. Let f : X → Y be a compactifiable morphism of algebraic stacks in
Nis-locSt. Then there exists a natural transformation:

αf : f! → f∗ (5.9)

which is an equivalence if f is proper.
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Proof. The construction of αf is similar to the construction on the level of schemes (Ap-
pendix C.4.3). Consider a factorization (j, p) of the f.
At first, we have a natural transformation

j# → j∗

for any open immersion j. This follows because at first j∗j# ∼= id by smooth base change
Ex(∆∗

#) applied to the cartesian square

X X

X X

id

id

j

j

(5.10)

Then by adjoint property (Proposition 5.1.2), we have a morphism j# → j∗.

Thus the natural transformation αf is defined as

αf : f! = p∗j# → p∗j∗ ∼= f∗.

When f is proper, the definition of compactifiable implies that αf is an equivalence.

5.4 Homotopy purity.
In this section we prove the homotopy purity theorem of SH⊗

ext(−). At first, we construct
the natural transformation ρf which is analog to the purity transformation on the level of
schemes. We then prove the homotopy purity theorem using the deformation to the normal
cone. Also as a corollary, we get an explicit description of the self equivalence Twf.

Proposition 5.4.1. (Purity) Let f : X → Y to be smooth morphism separated of finite type,
there exists a self equivalence Twf : SHext(X )→ SHext(X ) and an equivalence

Twf ◦f! ∼= f∗.

Proof. Let f : X → Y be a smooth morphism separated of finite type. Let δ : X → X ×Y X
be the diagonal morphism and p : X ×Y X → X be the projection map. Then we denote the
Thom transformation

Σf := p# ◦ δ∗.
By the base change theorem with respect to f! (Theorem 4.1.1) and the fact that αf is an
equivalence for proper morphisms (Proposition 5.3.3), we can construct the transformation
as one does on the level of schemes (Appendix C.4.3)

ρf : f# → f! ◦ Σf.

Let us check that Σf and ρf are equivalences. When base changed to the level of schemes by
choosing an atlas, these natural transformations are equivalences ([Rob14, Theorem 9.4.37]).
As the pullback functor along an atlas is conservative (Lemma 5.1.1), this implies that these
natural transformations are equivalences.
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The above proposition gives us the relation between f∗ and f! via the self equivalence
Twf := (Σf)

−1. We want to have a precise description of the self equivalence Σf as one gets on
the level of schemes via deformation to normal cone. We prove a similar result in the context
of SH⊗

ext(−).
At first we define the notion of smooth closed pairs in this context as one does on the level of
schemes.

Definition 5.4.2. Let Y be an algebraic stack in ND• (Nis-locSt). A smooth closed pair over
Y is a pair (X ,Z) where:

1. X ,Z are stacks over Y in ND• (Nis-locSt) such that the projection maps to Y are smooth.

2. Z ↪→ X is a closed substack of X .

A morphism of smooth closed pairs (X ,Z)→ (X ′,Z ′) is a representable morphism of algebraic
stacks f : X → X ′ such that f−1(Z ′) = Z as a set.

Notation 5.4.3. 1. For a smooth closed pair (X ,Z) over Y, we denote

X
X − Z

:= p#(iZ∗(1X )) ∈ SH⊗
ext(Y) (5.11)

where p : X → Y.

2. Let p : V → Y be a vector bundle over the algebraic stack Y where V,Y ∈ ND• (Nis-locSt).
Let s : Y → V be the zero section. Then the pair is (V,Y) a smooth closed pair where
Y is realized as a closed substack of V via the zero section.

Remark 5.4.4. A morphism of smooth closed pairs (X ,Z)→ (X ′,Z ′) induces a map

X
X − Z

→ X ′

X ′ − Z ′ (see [CD19, 2.4.32]).

We now state and prove the homotopy purity theorem. Recall that for a closed substack
Z ↪→ X , we denote the normal cone by NZ(X ) and the deformation to the normal cone by
DZ(X ) (see Notation 3.3.9).

Proposition 5.4.5. Let (X ,Z) be a smooth closed pair over Y. Then the canonical morphisms
of smooth closed pairs

(X ,Z)
p0←− (DZ(X ),A1Z)

p1−→ (NZX ,Z) (5.12)

induces an equivalence
X

X − Z
∼=

DZX
DZX − A1Z

∼=
NZX

NZX − Z
(5.13)

Proof. By Corollary 3.3.10, we know that the algebraic stacks DZ(X ) and NZ(X ) are in
Nis-locSt when X ∈ Nis-locSt.
The morphisms of smooth of closed pairs in ND• (Nis-locSt)

(X ,Z)
p0←− (DZ(X ),A1Z)

p1−→ (NZX ,Z) (5.14)
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on base changed to an atlas y : Y → Y yields us morphisms

(X,Z)
p0,0←−− (DZ(X),A1Z)

p1,0−−→ (NZ(X), ZZ) (5.15)

By Proposition C.4.12, we have an equivalence:

X

X− Z

p0,0∗←−−−
∼=

DZ(X)X

DZ(X) − A1Z

p1,0∗−−−→
∼=

NZ(X)

NZ(X) − Z
(5.16)

The construction of morphisms p0∗ commutes with pullbacks. Thus we have y∗∗ (p0∗) ∼= p0,0∗
and y∗(p1∗) ∼= p0,1∗. By [Rob14, Theorem 9.4.34], we see that p0,0∗ and p1,0∗ are equivalences.
As y∗ is conservative (Lemma 5.1.1), we get that p0∗ and p1∗ are equivalences.

The above equivalence gives us an explicit description of the Thom transformation Σf in
terms of the Thom space of the normal bundle of f.

Notation 5.4.6. Let f : X → Y be a smooth representable morphism of algebraic stacks.
Then the Thom space of the normal bundle is defined as

Th(Nf) :=
NX (X ×Y X )

NX (X ×Y X ) − Y
.

This definition is analog to the one defined on the level of schemes ([Rob14, Definition 9.4.27]).

Corollary 5.4.7. Let f : X → Y be separated of finite type, smooth representable morphism
of algebraic stacks. Consider the commutative diagram of algebraic stacks

X

X ×Y X X

X Y

δ

p

q f

f

(5.17)

Then we have:
Σf(−) := p#δ∗(−) ∼= −⊗ Th(Nf). (5.18)

Proof. The proof is exactly is same as one does for SH ([Rob14, Eq. 9.4.88]), we have

Σf(−) = p#δ∗(−)

= p#δ∗((1Y ⊗ δ∗p∗(−))
∼= p#(δ∗(1Y)⊗ p∗(−)) (projection formula)
∼= p#δ∗(1Y)⊗ (−)(projection formula)
∼= Th(Nf)⊗ (−)(Proposition 5.4.5)
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Remark 5.4.8. It is possible to define the Tate object 1X (1) ∈ SH⊗
ext(X ) as Ω2(K) where K

is defined as cofiber of the map 1Y → p#p
∗1X and Ω is the inverse of the suspension functor

on the stable ∞-category SH⊗
ext(X ). Then for a smooth representable morphism f : Y → X ,

we have
Th(Nf) ∼= 1Y(d)[2d]

where d is the relative dimension of the morphism f (and 1X(d) is the dth iterated tensor
product of 1X(1)). This follows from the fact that such a description holds on the level of
schemes. Thus combining the description of the Thom space of normal bundle of f with the
purity isomorphism, we get that:

f#(−) ∼= f!(1X (d)[2d]⊗ (−)).

5.5 Summarizing the results.
In this section, we summarize the results that we have proved in the previous sections in a
single theorem.

Theorem 5.5.1. The stable homotopy functor SH⊗ : N(Schfd)op → CAlg(PrLstb) extends to
a functor

SH⊗
ext : N

D
• (Nis-locSt)op → CAlg(PrLstb) (5.19)

such that for a morphism f : Y → X we have the following functors:

1. f∗ : SH⊗
ext(X)→ SH⊗

ext(Y).

2. f∗ : SHext(Y)→ SHext(X).

3. f! : SHext(X)→ SHext(Y) when f is representable, separated and of finite type.

4. f! : SHext(Y)→ SHext(X) when f is representable, separated and of finite type.

5. −⊗− : SHext(X)⊗ SHext(X)→ SHext(X).

6. HomSHext(X)(−,−) : SHext(X)× SHext(X)→ SH⊗
ext(X).

The functor SH⊗
ext along with the functors (f∗, f∗, f!, f!,−⊗−,Hom(−,−)) satisfy the following

properties:

1. (Monoidality) f∗ is monoidal, i.e. there exists an equivalence

f∗(E⊗ E ′) ∼= f∗(E)⊗ f∗(E ′) (5.20)

for E, E ′ ∈ SH⊗
ext(X)

2. (Projection Formula) For E, E ′ ∈ SHext(X) and B ∈ SHext(Y), we have the following
equivalences:

(a)
f!(B⊗ f∗(E)) ∼= (f!B⊗ E) (5.21)
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(b)
f! HomSHext(X)(E, E

′) ∼= HomSHext(Y)(f
∗E, f!E ′) (5.22)

3. (Base Change) If
X ′ Y ′

X Y

f ′

g ′ g

f

(5.23)

is a cartesian square of base schemes with g being representable, separated and of finite
type, we have the following equivalences:

(a)
f ′∗g ′

!
∼= g!f

∗ (5.24)

(b)
f ′∗g

′! ∼= g!f∗ (5.25)

4. (Proper pushforward) If f : X → Y is a compactifiable morphism, then there exists a
natural transformation:

αf : f! → f∗ (5.26)

which is an equivalence if f is proper.

5. (Purity) For f to be representable, smooth, and separated of finite type, there exists a
self equivalence Twf and an equivalence

Twf ◦f! ∼= f∗

6. (Localization) For i : U → X to be an open immersion and j : Z := X − U → X to be
the closed immersion from the complement of U , we have the cofiber sequences:

(a)
j!j

! → id→ i∗i
∗ (5.27)

(b)
i!i

! → id→ j∗j
∗ (5.28)

7. (Homotopy Invariance) Let π : A1X → X be the projection map. Then π∗ is fully faithful.

8. SH⊗
ext satisfies descent with respect to Nisnevich-local sections in ND• (Nis-locSt).

Proof. The theorem follows from Theorem 3.4.1, Theorem 4.1.1, Proposition 5.2.1, Proposi-
tion 5.2.2, Proposition 5.3.3 and Proposition 5.4.1.
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APPENDIX A

SIMPLICIAL SETS AND∞-CATEGORIES

We recall the notions of higher category theory in this chapter. The main references of this
chapter are [Lur09], [Lur17], [Lur18b],[Lan21] and [Lur18a]. Other than recalling the theory
of Kan extensions and abstract descent theory, we recall the notion of presentable stable ∞-
categories.
The notions that will briefly recall in this chapter are as follows:

1. objects, morphisms and limits in ∞-categories;

2. relation between simplicial and 2-categories with ∞-categories;

3. model structure of simplicial sets;

4. Kan extensions ;

5. adjoint functors and adjointable squares ;

6. presentable ∞-categories ;

7. Čech nerves and ∞-sheaves ;

8. stable ∞-categories

9. and the ∞-category PrLstb.

A.1 Simplicial sets and simplicial objects.
Definition A.1.1. [Lur18a, Definition 1.1.1.2] Let ∆ be the category defined as follows:

1. Objects: [n] = {0, 1, 2, · · · , n}.

2. Morphisms f : [m]→ [n] are maps such that f(i) ≤ f(j) if i < j.
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Definition A.1.2. [Lur18a, Notation 1.1.1.8, 1.1.1.9] The category ∆ has two special collec-
tion of maps for every positive integer n.

1. We have n+ 1 maps d ′n
i : [n− 1]→ [n] which are defined as

d ′n
i (j) =

{
j if j < i
j+ 1 if j ≥ i

These are called face maps.

2. We have n maps s ′n−1i : [n]→ [n− 1] which are defined as

sn−1i (j) =

{
j if j ≤ i
j− 1 if j > i

These are called degeneracy maps.

Definition A.1.3. [Lur18a, Definition 1.1.1.4] A simplicial object in a category C is a functor
F : ∆op → C.
When C = Sets, it is called simplicial set.

Notation A.1.4. For every n, an object of Fn := F(n) is called an n-simplex.
A morphism between simplicial sets F and G is a natural transformation of functors. Denote
sSets to be the category of simplicial sets.

Notation A.1.5. [Lur18a, Construction 1.1.2.1] We shall denote ∆n as the functor:

∆n := Hom∆(−, [n]) : ∆
op → Sets

It turns out by Yoneda lemma that for any simplicial set F, we have

Fn = HomsSet(∆
n, F).

Example A.1.6. 1. The total singular simplex Sing•(X) = {Singn(X)}n of a topological
space X is a simplicial set.

2. ([Lur18a, Example 1.2.1.4]) Given a small category C, we can associate a simplicial set,
namely called the nerve of a category as follows:

(a) NC0 are objects of C.

(b) NC1 are elements of the form a
f
−→ b where a, b ∈ C.

(c) NC2 are 2-composable morphisms i.e. elements of the form

a
f
−→ b

g
−→ c

where a, b, c ∈ C.
(d) Inductively NCn are n-composable morphisms i.e. elements of the form

a1
f1−→ a2

f2−→ a3 · · ·
fn−1
−−−→ an

where a1, a2, . . . , an ∈ C.
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(e) In context to the diagram of n-simplex, the face and degeneracy maps are defined
as follows. The ith face map maps a n-composable morphism of the form

a1
f1−→ a2

f2−→ a3 · · ·
fn−1
−−−→ an

to an (n− 1)-composable morphism

a1
f1−→ a2 · · ·ai−1

fi◦fi−1
−−−−→ ai+1 · · ·an.

The i th degeneracy maps a n-composable morphism

a1
f1−→ a2

f2−→ a3 · · ·
fn−1
−−−→ an

to a (n+ 1)-composable morphism

a1
f1−→ a2 · · ·ai

idai−−−→ ai
fi+1
−−→ ai+1 · · ·an.

A.2 ∞-categories: definition and basic terminologies.
At first, we recall the notion of ∞-groupoids or Kan complexes. Kan complexes are specific
kind of simplicial sets which satisfy ”extension along horns”. At first, we define what do we
mean by horns of the standard n-simplex.

Definition A.2.1. [Lur18a, Construction 1.1.2.9] The kth horn |Λnk | of |∆n| is the subcomplex
of |∆n| obtained by removing the interior and the face opposite of the kth vertex. Denote Λnk
to be the associated simplicial set. Precisely, the m simplicies of the horn are:

Λnk ([m]) = {α ∈ Hom∆([m], [n])|[n] ̸⊂ α(m) ∪ {[k]}}

Remark A.2.2. 1. One should view Λnk as removing the face opposite to the kth vertex
in ∂∆n.

2. We have obvious inclusion maps: Λnk ↪→ ∆n.

Definition A.2.3. [Lur18a, Definition 1.1.9.1] A simplicial set X satisfies the Kan condition,
if given a morphism Λnk → X can be extended to a map ∆n → X, i.e. in other words there
exists a dotted arrow such that the diagram commutes:

Λnk X

∆n

Such simplicial sets are called Kan complexes or fibrant objects. More generally, a morphism
f : X → Y of simplicial sets is called a Kan fibration if for all 0 ≤ k ≤ n, a commutative
diagram below, there exists a dotted arrow:

Λnk X

∆n Y
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If we closely look at the Kan condition it seems unreasonable to ask why the outer horns
shall extend. For example in the case n = 2, it is unreasonable for the horns Λ20, Λ22 to extend.
Visualizing this in diagram, these amounts to have the following dotted arrow in the diagram
below (for the case Λ02)

B

A C.

g

h

Thus extension of inner horns seems reasonable for arbitrary simplicial sets. These lead
us to the definition of ∞-categories.

Definition A.2.4. [Lur18a, Definition 1.3.0.1] An ∞-category is a simplicial set K which has
the following property: for any 0 < i < n, every map f0 : Λni → K of simplicial sets admits an
extension f : ∆n → K.

Example A.2.5. Here are some examples.

1. The nerve of any ordinary category C is an ∞-category. This because the extension
from the inner horns to the whole simplex is uniquely defined by the composition of
sequences of n maps.

2. It is clear from the definition that Kan complexes are ∞-categories.

A.2.1 Objects and morphisms in an ∞-category.

Definition A.2.6. [Lur18a, Definition 1.3.11] Let C = S• be an ∞-category.

1. An object of C is an element of S0.

2. A morphism of C is an edge of the simplical set S• i.e. an element of S1.

3. Let f ∈ S1 be a morphism in C. We will refer X = d1(f) as the source of f and d0(f) = Y
as the target of f.

4. For any object X, the degenerate edge s0(X) is a map from X to itself. We denote this
morphism as the identity morphism of X, denoted by idX.

Example A.2.7. 1. LetN•(C) be the nerve of an ordinary category C. Objects are objects
of the ambient category C. Morphisms are the ambient morphisms of C.

2. For C = Sing•(X), we have

(a) objects are points of the topological space X.
(b) morphisms are paths in the topological space X.
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A.2.2 Homotopies and composition of morphisms.
The concept of homotopies of morphisms allow us to define the homotopy category associated
to an ∞-category. We refer to [Lur18a, Section 1.3.3 ,1.3.4,1,3,5] for more details.
Definition A.2.8. [Lur18a, Definition 1.3.3.1] Let C be an ∞-category and let f, g : C→ D

be a pair of morphisms in C having the same source and target. A homotopy from f to g is a
2-simplex σ of C satisfying d0(σ) = idD, d1(σ) = g, d2(σ) = f, as depicted in the diagram

D

C D

idDf

g

We will say f is homotopic to g if there exists a homotopy from f to g.
Theorem A.2.9. [Lur18a, Proposition 1.3.3.5] Let X, Y be two objects of an ∞-category
C. Let E denote the collection of all morphisms from X to Y in C. Then homotopy is an
equivalence relation in E.

Before defining homotopy classes, we need to know to define composition of morphisms in
our ∞-category.
Definition A.2.10. [Lur18a, Definition 1.3.4.1] Let C be an ∞-category. Suppose we are
given objects X, Y ∈ C and morphisms f : X→ Y, g : Y → Z and h : X→ Z. We will say that h
is a composition of f and g if there exists a 2-simplex σ of C satisfying d0(σ) = g, d1(σ) = h
and d2(σ) = f. In this case, we will also say that the 2-simplex σ witnesses h as a composition
of f and g.
Remark A.2.11. Composition of morphisms exist by the property of an ∞-category. The
above definition is independent of choice of morphisms upto homotopy. This is clear from the
next proposition.
Proposition A.2.12. [Lur18a, Proposition 1.3.4.2] Let C be an ∞-category containing mor-
phisms f : X→ Y and g : Y → Z, then

1. Let h : X→ Z which is a composition of f and g. Let h ′ : X→ Z be another morphism
with the same source and target. Then h ′ is a composition of f and g iff h ′ is homotopic
to h.

2. Suppose f ′ : X → Y, g ′ : Y → Z are morphisms homotopic to f and g respectively. Let
h, h ′ be compositions of f, g and f ′, g ′ respectively. Then h ′ is homotopic to h.

We are ready to define homotopy classes of morphisms.
Construction A.2.13. [Lur18a, Construction 1.3.5.1] Let C be an ∞-category. For every
pair of objects X, Y ∈ C, we let HomhC(X, Y) denote the set of homotopy classes of morphisms
from X → Y in C. For every morphism f : X → Y, we let [f] denote its equivalence class in
HomhC(X, Y).
For morphisms classes [f] ∈ HomhC(X, Y), [g] ∈ HomhC(Y, Z), we define the composition:

◦ : HomhC(Y, Z)× HomhC(X, Y)→ HomhC(X,Z)

as [g] ◦ [f] = [h] where h is a composition of f and g in the ∞-category C.
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Proposition A.2.14. [Lur18a, Proposition 1.3.5.2] Let C be an ∞-category. Then:

1. The composition law defined above is associative.

2. The homotopy class [idX] is a two sided identity with respect to the composition.

We are ready to define the homotopy category.

Definition A.2.15. [Lur18a, Definition 1.3.5.3] Let C be an ∞-category, We define the cat-
egory hC as follows:

• The objects of hC are objects of C.

1. For every pair of objects X, Y ∈ C, we let HomhC(X, Y) denote the collection of homotopy
classes of morphisms from X to Y (as in the Construction above).

2. Composition of morphisms are defined in the construction.

We call hC as the homotopy category of C.

Remark A.2.16. The previous proposition gives us the fact that hC is a category.

A.2.3 Joins of ∞-categories.
At first, let us recall joins in classical category theory.

Definition A.2.17. [Lur09, Section 1.2.8] Let C, C ′ be categories. We define the join of C
and C ′, denoted by C ∗ C ′ as follows:

1. Objects: ob(C) or ob(C ′).

2.

HomC∗C ′(X, Y) =


HomC(X, Y) X, Y ∈ C
HomC ′(X, Y) X, Y ∈ C ′

ϕ X ∈ C ′, Y ∈ C
∗ X ∈ C, Y ∈ C ′

We now define joins for simplicial sets which will be joins for ∞-categories.

Definition A.2.18. [Lur09, Definition 1.2.8.1] Let S, S ′ be simplicial sets. We define the join
of S, S ′, denoted by S ∗ S ′ as

(S ∗ S ′)n = Sn ∪ S ′n ∪
⋃

i+j=n−1

Si × S ′j

Example A.2.19. We have ∆j ∗ ∆i ∼= ∆i+j−1. Also for ordinary categories C, C ′, we have
N(C ∗ C ′) ∼= N(C) ∗N(C ′).

We have the following proposition.

Proposition A.2.20. [Lur09, Proposition 1.2.8.3] Let S, S ′ be ∞-categories. Then the join
S ∗ S ′ is also an ∞-category.
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Proof. Let p : Λni → S ∗ S ′ be the map. If p maps entirely into S or S ′, then we have the
extension by the property of S, S ′ being ∞-categories.
Now suppose p maps vertices 0, 1, ..j to S and j+ 1, j+ 2, ...n to S ′, by extension property of
S and S ′ we have the maps:

pj : ∆
{0,1,2..j} → S, p ′

j : ∆
{j+1,j+2,..n} → S ′

Together we get a map ∆n → S ∗ S ′.

We shall use the following useful notation:

Notation A.2.21. [Lur09, Notation 1.2.8.4] Let K be a simplicial set. Then K▹ is called the
left cone defined by ∆0 ∗K. Dually we call K◃ to be the right cone which is defined by K ∗∆0.

A.2.4 Over and undercategories of an ∞-category.
In classical category theory, we have the concept of over and undercategories. Given a cate-
gory C and an object x ∈ C, we have the overcategory defined as:

1. Objects:Y → X morphisms in C.

2. Morphisms:

Y Z

X

Choosing an object X is a map of simplicial sets X : ∆0 → N(C). The analogue of objects and
morphisms of overcategory for N(C) can be defined as follows:

1. Objects p0 : ∆0 ∗ ∆0 → N(C) where the restriction on second factor gives X.

2. Morphisms p1 : ∆1 ∗ ∆0 → N(C) where restricting on second factor gives X.

This motivates us to give the following definition of overcategory for simplicial sets and thus∞-categories.

Definition A.2.22. [Lur09, Proposition 1.2.9.2, Remark 1.2.9.5] Given p : K→ S an aribtrary
map. There exists a simplicial set S/p which is defined as follows:

(S/p)n = Homp(∆
n ∗ K, S)

where the subscript on the right hand side indicates that we consider only morphisms f :
∆n ∗ K→ S such that f|K = p. S/p is called the overcategory associated to p.

Dually, we can define the undercategory with respect to a map of simplicial sets.

Remark A.2.23. [Lur09, Remark 1.2.9.6] Let C be an ordinary category. Let X be an object
of C (also an object of N(C)). We have the following equivalence N(C)/X ∼= N(C/X).
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A.2.5 Initial and final objects of an ∞-category.
Let X be an object in an ordinary category C. Then X is said to be final if for all objects Y ∈ C,
we have an unique morphism fY : Y → X. X is said to be initial if it is final in the category Cop.

In the language of ∞-categories, we define such notions in the following manner.

Definition A.2.24. [Lur09, Definition 1.2.12.3] Let C be an ∞-category, a vertex x ∈ C (i.e.
x ∈ C0) is said to be final/ initial if for any map f : ∂∆n → C such that f([n]) = x(f([0]) = x),
it extends to a morphism f̃ : ∆n → C.

Remark A.2.25. In the case of n = 1, we see the condition in the case of classical category
theory. In fact, it can be see that the for an object y ∈ C and if x is initial/final object of the
category, the mapping space HomR(x, y) (HomR(y, x)) is contractible.

A.2.6 Diagrams, limits and colimits in an ∞-category.
In classical category theory, a diagram is a morphism from an indexing category to the cate-
gory. In the simplicial world, it is defined as follows:

Definition A.2.26. A diagram in a simplicial set C is a morphism of simplicial sets F : K→ C.

A limit of a diagram in the context of classical category theory is defined via the universal
property. An elegant way to view this is to see in the following manner:
Let C be a category and I be an indexing category. Let F : I → C be a functor Consider the
overcategory C over F denoted as CF. This is defined as:

1. Objects: {Diagrams : γC,i : F(C)→ F(I)}C∈C with usual commutativity relations.

2. Morphisms: Morphisms between diagrams with commutativity conditions.

Now a limit of the functor F is the final object in the category CF. The usual universal property
translates into the condition of the object being final in this category.

We use this equivalent definition in the ∞-categorical setting.

Definition A.2.27. [Lur09, Definition 1.2.13.4] Let C be an ∞-category. Let f : K → C be
an arbitrary map of simplicial sets. Then a limit of f is a final object in the overcategory C/f.
Dually, a colimit of F is an initial object in the undercategory Cf/.

Remark A.2.28. Let us spell out the definition in a special case. Let I be the three object
category considered as a simplicial set:

i1

i2 i0

Let F : I→ C be a functor where C is an ∞-category. Denote the diagram as:
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X1

X2 X0

f10

f02

We want to see what the universal property of the limit of F is. Consider the overcategory
C/F. Let X be the limit of F. Thus given any map fn : ∂∆n → C/F with fn([n]) = x, there
exists a map f̃n : ∆n → C/F such that the diagram

∂∆n C/F

∆n

fn

commutes. Let us spell out the above condition case by case what this means:

1. n=0: In this case, the condition just says that we have a unique morphism ∆0 → C/F,
i.e. a map ∆0 ∗ I → C such that when restricted to I it is F. Thus we have a following
diagram:

X X1

X2 X1

f1

f2
f0

f10

f20

along with homotopies on the triangles which are 2-simplexes in the ambient category
C.

2. n=1: In this case, we are given a map ∂∆1 → C/F which sends [1]→ X, thus we have a
morphism of simplicial sets ∂∆1 ∗ I→ C such that:

(a) [1] should be sent to X.
(b) When restricted to I, it should be F.

Unravelling this morphism as a diagram, we get the following:

Y1 X X1

X2 X0

f1

f2
f0

f10

f20
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with additional homotopies on the triangles Y1X2X0 and Y1X1X0.
The existence of the morphism ∆1 → C/F now translates to existence of a dotted arrow
in the diagram:

Y1 X X1

X2 X0

f1

f2
f0

f10

f20

such that we have 2-simplices: Y1XX1, YXX2 and YXX0 and 3-simplices: YXX1X0 and
YXX2X0.

Notice this is exactly a generalization of the universal property of limits in classical
category theory.

3. For cases n = 2 and higher cases, we need to replace Y1 and X1 by a boundary of an
n-simplex where the nth coordinate is X. The existence of the unique morphism says
that we can fill the boundary to get an n-simplex and additional homotopies in the
diagram which are compatible with one another.

A.3 Relation between simplicial and ∞-categories.
This section recalls the connection between simplicial and ∞-categories. The main reference
is [Lur09, Section 1.1.4,1.1.5]

Definition A.3.1. [Lur09, Definition 1.1.4.1] A simplicial category is a category which is
enriched over category of simplicial sets Set∆.

Simplicial categories are quite common, the category sSet is a simplicial category. We
have similar notions of homotopy categories of simplicial categories like∞-categories. Thus it
is reasonable to expect a connection between infinity categories and simplicial categories. The
goal of this section is to define the ”homotopy coherent nerve” of a simplicial category.
This gives a formal notion of homotopy coherent diagrams which is a core idea for this
whole language.

Recall, that given a small category C, we have N(C) the usual nerve. This gives us a
functor

N : Cat→ sSet

More precisely, we defined the simplicial set N(C) as:

HomsSet(∆
n,N(C)) = HomCat([n], C)

70



A.3 - Relation between simplicial and ∞-categories. SH for algebraic stacks.

where [n] is the linearly ordered set considered as a category. Our goal is to define

Nsm : Cat∆ → sSet

We expect it to be defined in the similar way as the usual nerve, but we need to encode the
simplicial structure in the definition. Thus we need to replace [n] by a ”thickening” to get a
simplicial category C[∆n]. Our first goal is to define such simplicial categories.

Definition A.3.2. [Lur09, Definition 1.1.5.1] Let J be a finite nonempty linearly ordered set.
The simplicial category C[∆J] is defined as follows:

1. Objects: Elements of J.

2. If i, j ∈ J, then

MapC[∆J](i, j) =

{
ϕ if j < i
N(Pij) if i ≤ j

Here Pij denotes the partially ordered set {I ⊂ J : (i, j) ∈ I∧ (∀k ∈ I)[i ≤ k ≤ j]}

If i0 ≤ i1 ≤ i2. ≤ · · · ≤ in, then the composition

MapC[∆J](i0, i1)× MapC[∆J](i1, i2)× · · · × MapC[∆J](in−1, in)→ MapC[∆J](i0, in)

is induced by the map of partially ordered sets:

Pi0i1 × Pi1i2 × · · · × Pin−1in → Pi0in

defined as
(I1, I2, · · · , In)→ I1 ∪ I2 ∪ · · · ∪ In

Remark A.3.3. Let us try to understand the definition in special cases. Let J = [2] be the
linearly ordered set. Then the category C[∆2] := C[∆J] has objects 0, 1 and 2. Denote pij to
be the unique morphism from i to j when i ≤ j.
We have the following morphisms:

1. MapC[∆2](0, 1) = N({{0, 1}}).

2. MapC[∆2](1, 2) = N({{1, 2 }).

3. MapC[∆2](0, 2) = N({{0, 2}{0, 1, 2}}).

Let us denote qij to be the partially ordered set {i, j}. Thus we can see that by the definition
of C[∆2], we denote {0, 1, 2} as q12 ◦ q01.
1‘ Notice that p02 = p12 ◦ p01 in [2], whereas in C[∆2], q02 ̸= q12 ◦ q01. But we notice that
q02 is homotopic to q12 ◦ q01 in MapC[∆2](0, 2). Thus C[∆2] is the category 2, where we have
dropped the associativity condition

p02 = p12 ◦ p01

but the composition is homotopic to p02.
There is a similar explanation for C[∆n], it is the category [n] where we have dropped the
associativity conditions

pik = pjk ◦ pij ; i < j < k
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Instead, all sorts of compositions of the form
pi0k ◦ pi1i0 ◦ · · · ◦ pin−1in

for i < in < in−1 < · · · i0 < k are homotopic to pik.
Definition A.3.4. [Lur09, Definition 1.1.5.5] Let C be a simplicial category. The simplicial
nerve Nsm(C) is described by the formula

HomSets∆(∆
n,Nsm(C)) = HomCat∆(C[∆

n], C) (A.1)
We have the following proposition.

Proposition A.3.5. [Lur09, Proposition 1.1.5.10] Let C be a simplicial category such that
for any two objects X, Y ∈ C, MapC(X, Y) is a Kan complex. Then the simplicial nerve Nsm(C)
is an ∞-category.

A.4 Mapping spaces in ∞-categories.
The Hom sets in∞-categories are not only sets but they are objects in the homotopy category
of spaces. In this subsection, we introduce two notions of mapping spaces which represent the
same homotopy type.
Definition A.4.1. [Lur09, Definition 1.1.3.2, Example 1.1.3.3] Let Top be the category of
CW complexes where for given X and Y two topological spaces, we have MorTop(X, Y) to be
space of continuous maps between topological spaces equipped with compact open topology.
Thus Top is a topological category. We define to be the homotopy category of Top and we
call it to be the homotopy category of spaces.
Definition A.4.2. Given a simplicial category C, we can associate a topological category |C|

as follows:
1. Objects are objects of C.

2. Hom|C|(X, Y) = |HomC(X, Y)|.
Definition A.4.3. [Lur09, Definition 1.2.2.1] For S, a simplicial set and x, y ∈ S0, we define

MapS(x, y) = Homh|C[S]|(x, y) ∈ H.

Remark A.4.4. Some remarks on the definition of MapS(x, y):
1. An advantage of this definition is that it can be defined for an arbitrary simplicial set.

2. A disadvantage of this definition is that it is not usually a Kan complex, hence homotopic
theoretic computations become more difficult.

There is a second candidate for mapping spaces which is relevant in∞-categorical setting.
Definition A.4.5. [Lur09, Section 1.2.2] Let S be a simplicial set with objects x, y, then we
define the simplicial set opHomR

S(x, y) as follows:
HomSet∆(∆

n,HomR
S(x, y)) = {z : ∆n+1 → S|z|∆n+1 = y, z|∆0,··· ,n = x}

We have the following important proposition on the above definition
Proposition A.4.6. [Lur09, Proposition 1.2.2.3] Let C be an ∞-category with objects x, y,
then HomR

C(x, y) is a Kan complex.
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A.5 Subcategories of ∞-categories.
The notion of subcategories in∞-categories is induced from the level of homotopy categories.

Definition A.5.1. [Lur09, Section 1.2.11] Let C be an ∞-category. Let (hC) ′ ⊂ hC be a
subcategory. Let C ′ be the pullback

C ′ C

N(hC) ′ N(hC)

(A.2)

in Set∆. We say C ′ is the subcategory of C spanned by (hC) ′. Also C ′ ⊂ C is a subcategory if
it arises in this fashion.
Morever we say C ′ is full if (hC) ′ is full subcategory of hC.

A.6 Relation between 2-categories and ∞-categories.
As we have seen before, given any ordinary small category, the nerve construction gives you
an ∞-category. What about 2-categories? The reason for why we are actually concerned
about this is because we shall work with the 2-category of algebraic stacks. At first, we recall
the definition of 2-categories, followed by the Duskin Nerve which yields an infinity category
from a special class of 2-categories. The main tool for defining the motivic homotopy theory
of algebraic stacks requires an ∞-category associated to 2-category of algebraic stacks. The
main reference is [Lur18a, Section 2.2,2.3]

A.6.1 2-Categories.

Definition A.6.1. [Lur09, Definition 2.2.1.1] A 2-category C consists of the following data:

1. A collection Ob(C) whose elements we refer to as objects of C. We will often abuse
notation by writing X ∈ C to indicate that X is an element of Ob(C).

2. For every pair of objects X, Y ∈ C, a category HomC(X, Y). We will refer to objects
of the category HomC(X, Y) as 1-morphisms from X to Y. We denote those objects as
f : X → Y. Given a pair of 1-morphisms f, g in HomC(X, Y), we refer to morphisms
between f and g as 2-morphisms from f to g. We will denote them as γ : f⇒ g.

3. For every triple of objects X, Y, Z in C, a composition functor

◦ : HomC(Y, Z)× HomC(X, Y)→ HomC(X,Z)

4. For every object X ∈ C, we have a 1-morphism idX ∈ HomC(X,X), which we call the
identity 1-morphism from X to itself.

5. For every object X ∈ C, an isomorphism µX : idX ◦ idX ⇒ idX in the category HomC(X,X).
We refer to the 2-morphisms {µX}X∈C as the unit constraints of C.
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6. For every quadrauple objects W,X, Y, Z ∈ C, a natural isomorphism α from the functor

HomC(Y, Z)× HomC(X, Y)× HomC(W,X)→ HomC(W.Z) (h, g, f)→ h ◦ (g ◦ f)

to the functor

HomC(Y, Z)× HomC(X, Y)× HomC(W,X)→ HomC(W.Z) (h, g, f)→ (h ◦ g) ◦ f.

We denote the value on a triple (h, g, f) by αh,g,f : h ◦ (g ◦ f)⇒ (h ◦ g) ◦ f. We refer to
these isomorphisms as the associativity constraints of C.

7. For every pair of objects X, Y ∈ C, the functors

HomC(X, Y)→ HomC(X, Y)→ HomC(X, Y) f→ f ◦ idX

and
HomC(X, Y)→ HomC(X, Y) f→ idY ◦f

are fully faithful.

8. For every quadruple of composable 1-morphisms, there is a commutative diagram in
shape of a pentagon.

Definition A.6.2. [Lur18a, Definition 2.2.0.1] Let C be a 2-category. Then C is said to be a
strict 2-category if the unit and the associativity constraints are the identity 2-morphisms in
C.

We have another kind of constraints in 2 categories which can be deduced from the defi-
nition.

Definition A.6.3. [Lur18a, Construction 2.2.1.12] Let C be a 2-category. For every 1-
morphism f : X→ Y in C, we have canonical ismorphisms

idY ◦(idY ◦f)
αidY,idY,f

−−−−−−→ (idY ◦ idY) ◦ f
µY◦idf−−−−→ idY ◦f

As the comoposition on the left with identity is fully faithful, it follows there exists a unique
isomorphism λf : idY ◦f⇒ f for which the diagram

idY ◦(idY ◦f) (idY ◦ idY) ◦ f

idY ◦f

αidY,idY,f

ididY
◦λf µY◦idf

commutes We will refer λf as the left unit constraint. Similarly, we have ρf : f ◦ idX ⇒ f

called the right unit constraint for which a similar kind of diagram exists like above which
commutes.

We now define lax functors between 2-categories.

Definition A.6.4. [Lur18a, Definition 2.2.4.5] Let C and D be 2-categories. A lax functor F
from C to D consists of the following data:
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1. For every object X in C, an object F(X) in D.

2. For every pair of objects X, Y ∈ C, a functor of ordinary categories:

FX,Y : HomC(X, Y)→ HomD(F(X), F(Y))

We will denote F(f) when FX,Y is evaluated on an object f in the category HomC(X, Y).
Also, we shall denote F(γ) when FX,Y is evaluated at a morphism γ in the category
HomC(X, Y).

3. For every morphism X ∈ C, a 2-morphism ϵX : idF(X) ⇒ F(idX) in the 2-category D,
which we will refer to as the identity constraint.

4. For every pair of composable 1-morphisms X f
−→ Y

g
−→ Z in the 2-category C, A 2-

morphism
µg,f : F(g) ◦ F(f)⇒ F(g ◦ f)

which we will refer to as the composition constraint. We also require that if the objects
X, Y and Z are fixed, then the construction (g, f)→ µg,f is functorial.

These datas are required to satisfy compatibility with associativity and the unit constraints.

Definition A.6.5. [Lur18a, Definition 2.2.4.5] A functor from C to D is a lax functor F : C →
D with the property that the identity and composition constraints are isomorphisms.

Definition A.6.6. [Lur18a, Definition 2.2.4.17] Let C and D be 2-categories and let F : C → D
be a lax functor. We say that F is unitary if for every object X ∈ C, the identity constraints
ϵX is an invertible 2-morphism of D. We also say that F is strictly unitary if for every object
X ∈ C, we have an equality idF(X) = F(idX) and the identity constraint ϵX is the identity
2-morphism from idF(X) to itself.

A.6.2 The Duskin nerve.

In this subsection, we describe how to construct a simplicial set from a 2-category. This is
done by the Duskin Nerve. Before that we make a definition on a special class of 2-categories
we are interested in.

Definition A.6.7. [Lur18a, Construction 2.3.0.1] A (2,1)-category is a 2-category C with the
property that every 2-morphism in C is invertible.

Example A.6.8. We define the 2-category of algebraic stacks as:

1. Objects: Algebraic stacks.

2. 1-morphisms: Morphisms of algebraic stacks.

3. 2-morphisms: Natural transformations which are isomorphisms.

Thus the 2-category of algebraic stacks is a (2, 1)-category.
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Definition A.6.9. [Lur18a, Definition 2.3.1.1] Let n be a non-negative integer and let [n]
be the usual linearly ordered set. We will regard [n] as a category and as a 2-category where
2-morphisms are the identity 2-morphisms. For any 2-category C, we denote

NDn (C) = {strictly unitary lax functors from [n]→ C}

This determines
ND• (C) : ∆op → Sets .

We will denote ND• (C) as the Duskin Nerve of C.

We have the following theorem which relates (2, 1)-categories with ∞-categories.

Theorem A.6.10. [Lur18a, Theorem 2.3.2.1] Let C be a 2-category. Then C is a (2, 1)-
category iff ND• (C) is an ∞-category.

A.7 The ∞-category of spaces.
In this section, we define the ∞-categorical analogue of Sets.

Definition A.7.1. [Lur09, Definition 1.2.16.1] Let Kan denote the full subcategory of Set∆
spanned by (small) Kan complexes. We define S to be the simplicial nerve of Kan. We refer
S to be the ∞-category of spaces.

Let Ŝ be the simplicial nerve of simplicial category spanned by large Kan complexes.

Proposition A.7.2. [Lur09, Remark 1.2.16.2] The simplicial sets Ŝ and S are∞-categories.

A.8 Model structure and fibrations of simplicial sets.
In this section, we start by recalling fibrations of simplicial sets. Fibrations play an important
role in defining model structure on the category of simplicial sets. They play an important role
in phrasing the Grothendieck construction of fibered categories in the ∞-categorical setting.

A.8.1 Recalling notions of fibrations on simplicial sets.
We recall the various notions of fibrations and anodyne in the category of simplicial sets.
An important notion for these definitions is the notion of left lifting and right lifting property
which is used in the context of model categories.

A morphism p : X → Y of simplicial sets has right lifting property(RLP) with respect to
q : Z→W if for a commutative diagram of the form

Z X

W Y

q p

there exists a dotted arrow r :W → X such that both of the triangles commutes.
We have the dual notion of left lifting property (LLP).
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Definition A.8.1. [Lur09, Definition 2.0.0.3] Let f : X→ S be a morphism of simplicial sets.

1. f is a Kan fibration if it has RLP with respect to Λni ⊂ ∆n for 0 ≤ i ≤ n for all n ≥ 0.

2. f is a trivial fibration if it has LLP with respect to ∂∆n ⊂ ∆n for all n ≥ 0.

3. f is a left (right) fibration if it has RLP with respect toΛni ⊂ ∆n for 0 ≤ i < n(0 < i ≤ n).

4. f is an inner fibration if it has RLP with respect to Λni ⊂ ∆n for 0 < i < n.

5. f is left (right) anodyne if it has LLP with respect to left(right) fibrations.

6. f is inner anodyne if it has LLP with respect to inner fibrations.

7. f is a categorical equivalence if for any other ∞-category B, the map induced by f

YB → XB

is a equivalence on the level of homotopy categories. Here YB := Fun(Y, B).

Lemma A.8.2. [Rez, Section 21] Inner anodynes and trivial fibrations are categorical equiv-
alences.

A.8.2 Model structures on simplicial sets.
We recall two model structures on the category of simplicial sets Sets∆,namely the Quillen
Model structure and Joyal Model structure. We refer to [Lur09, Chapter 2, Appendix A.2]

Definition A.8.3. We define the Model structure on Sets∆, denoted by Sets∆,Q as follows:

1. Cofibrations are level wise injections of simplicial sets.

2. Weak equivalences are weak homotopy equivalences i.e. morphisms whose geometric
realization is a weak homotopy equivalence of topological spaces.

3. Fibrations are Kan fibrations.

Remark A.8.4. In Set∆,Q, the Kan complexes are fibrant objects.

Definition A.8.5. We have the Joyal model structure on Set∆, denoted by Set∆,J defined by
the following class of morphisms:

1. Cofibrations are levelwise injections.

2. Weak equivalences are categorical equivalences.

3. Fibrations are inner fibrations.

Remark A.8.6. The ∞-categories are fibrant objects in Set∆,J

A.8.3 Cartesian fibrations.
Cartesian fibrations are ∞-categorical generalizations of category fibered over categories. At
first, we need to have an ∞-categorical generalization of cartesian morphisms.
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p-Cartesian morphisms.

Definition A.8.7. [Lur09, Definition 2.4.1.1] p : X→ S an inner fibration of simplicial sets.
Let f : x→ y be an edge in X. We shall say that f is p-Cartesian if the induced map

X/f → X/y ×S/p(y) S/p(f)

is a trivial Kan fibration.

Remark A.8.8. Let us get the explanation of the definition step by step. Recall that
∆m ∗ ∆n ∼= ∆m+n+1.

Condition of trivial fibration at level of objects.

1. (X/f)0 =

z x

y
f ,

2. (X/y)0 = (m→ y).

3. (S/p(f))0 =

m ′ p(x)

p(y)
p(f) ,

Thus the map at the level 0 is the usual map. Being a Kan fibration, means that given
z → y a morphism such that p(x), p(y) and p(z) form a 2-simplex, then there exists a map
z→ y such that z, x, y form a 2-simplex.

This shows the analog of a morphism being Cartesian in category theory.

.

Proposition A.8.9. [Lur09, Remark 2.4.1.4] Let p : X → S be an inner fibration. Then
f : ∆1 → X is p-Cartesian iff we have the following dotted arrow:

∆{n−1,n}

Λnn X

∆n S

f

for n ≥ 2.

We now recall the definition of cartesian fibrations.
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Definition A.8.10. [Lur09, Definition 2.4.2.1] A map p : X → S is a Cartesian fibration if
the following conditions hold

1. p is an inner fibration.

2. Let f : x → y an edge in S and ỹ a vertex of X such that p(ỹ) = y, then there exists a
p-Cartesian edge f̃ : x̃→ ỹ such that p(f̃) = f.

Dually, we have the notion of coCartesian fibrations just taking the opposite of the maps
of simplicial sets being Cartesian fibrations.

A.8.4 Isofibrations.
Isofibrations are morphisms of simplicial sets which lift equivalences. We state the definition
and some properties of isofibrations. The main reference of this section is [Lan21, Section
2.1].

Definition A.8.11. [Lan21, Definition 2.1.4] A inner fibration p : C → D is called an isofi-
bration if every lifting problem

{0} C

∆1 D

p

f

(A.3)

where f represents an equivalence of D has a solution which represents an equivalence of C.

We list some properties of isofibrations.

Lemma A.8.12. [Lan21, Corollay 2.1.6, Lemma 2.1.7]

1. Left and right fibrations between ∞-categories are isofibrations.

2. p is an isofibration iff pop is.

3. For any ∞-category D and n ≥ 1, the restriction map Fun(∆n,D) → Fun(∂∆n,D) is
an isofibration.

Remark A.8.13. The third property in the above lemma is a special case of [Lan21, Propo-
sition 2.2.5].

Lemma A.8.14. Let D be an ∞-category and n ≥ 1. Let

f : ∆1 × ∂∆n
∐

{0}×∂∆n

{0}× ∆n → D

be a morphism such that f|∆1×[k] : ∆
1 → D is an equivalence for all 0 ≤ ke ≤ n. Then there

exists a morphism f ′ : ∆n × ∆1 → D such that the diagram

∆1 × ∂∆n
∐

{0}×∂∆n{0}× ∆n D

∆n × ∆1

f

f ′ (A.4)

commutes.
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Proof. The morphism f gives us the following commutative diagram

{0} Fun(∆n,D)

∆1 Fun(∂∆n,D)

p

g

(A.5)

where g is an equivalence. By the previous lemma, the map p is an isofibration. Thus there
exists a morphism f ′ : ∆1 × Fun(∆n,D) which extends f. This completes the proof.

A.9 The category of ∞-categories.
In this section, we define the ∞-category of ∞-categories Cat∞.

Definition A.9.1. Ĉat∆∞(Cat∆∞) is the simplicial category which is defined as follows:

1. Objects: (small) ∞-categories.

2. Morphisms: MapCat∆∞(C,D) = Largest Kan complex inside Fun(C,D) .

We define Cat∞ := Nsm(Cat∆∞) and Ĉat∞ := Nsm(Ĉat∆∞) (where Nsm is the simplicial nerve).

A.10 Cofinal maps.
In this section, we briefly recall the notion of cofinal maps. Given a functor f : K → K ′ of
simplicial sets, then sometimes colim(f) can be computed by a simpler diagram instead of
K. The theory of cofinal maps generalizes this formalism. We recall the definition of cofinal
maps ([Lur09, Section 4.1]) and state some important properties of such maps. An important
application of cofinal maps is that limits of simplicial objects and semi-simplicial objects are
the same.

Definition A.10.1. [Lur09, Definiton 4.1.1.1] Let p : S→ T be a map of simplicial sets. We
say that p is cofinal if for any right fibration X→ T , the induced map of simplicial sets

MapT (T, X)→ MapT (S, X)

is a homotopy equivalence.

Remark A.10.2. There is a dual notion of final maps where we replace right by left fibrations.

Proposition A.10.3. [Lur09, Proposition 4.1.1.3, 4.1.1.8]

1. An isomorphism of simplicial sets is cofinal.

2. An inclusion of simplicial sets is cofinal iff it is a right anodyne.

3. A map of simplicial sets v : K ′ → K is cofinal iff for any diagram p̄ : K◃ → C which is a
colimit of p = p̄|K, the induced map p̄ ′ : K ′◃ → C is a colimit of p ′ = p̄ ′|K ′.
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An important application of cofinality is the following corollary.

Corollary A.10.4. [Lur09, Corollay 5.1.2.3] Let K and S be simplicial sets. Let C be an ∞-
category such that C admits K-indexed limits and colimits. The ∞-category Fun(S, C) admits
K-indexed limits and colimits. In particular, the ∞-category of presheaves over S denoted by
P(S) admits all limits and colimits.

Now we state an important application of cofinality on limits on simplicial and semisim-
plicial objects.

Definition A.10.5. Let ∆s to be the sub-simplicial set of ∆ where the objects are same as
∆ but the morphisms are only injective maps (i.e. spanned by face maps).

Lemma A.10.6. [Lur09, Lemma 6.5.3.7] The inclusion i : N(∆ops )→ N(∆)op is cofinal, i.e.
taking colimits in Ĉat∞ indexed by N(∆ops ) and N(∆op) are same.

A.11 Kan extensions.
Let C and J be ordinary categories. We have the diagonal functor:

δ : C → CJ

The diagonal functor has a left adjoint if C admits small colimits. The left adjoint is described
as:

CJ → C : f→ colim f
This allows us to colimits as left adjoints to diagonal functors.

More generally, if we have a map i : J → J ′ a map between diagram categories,then we have
the induced functor:

i∗ : CJ ′ → CJ .

If C has sufficient supply of colimits, one can construct a left adjoint to i∗. This is called as
the left Kan extension along i.
In this section, we recall the notion of Kan extensions along inclusion of ∞-categories. The
main reference for this section is [Lur09, Section 4.3.2]. In order to recall the precise definition,
we recall the notion of relative colimits.

A.11.1 Relative colimits.
Relative colimits are generalization of usual colimits, but along inner fibrations. The definition
is as follows:

Definition A.11.1. [Lur09, Definition 4.3.1.1] Let f : C → D be an inner fibration of simpli-
cial sets, let p̄ : K◃ → C be a diagram and let p = p̄|K. We will say p̄ is a f-colimit of p if the
map:

Cp̄/ → Cp/ ×Dfp/
Dfp̄/

is a trivial fibration of simplicial sets. In the case, we will also say that p̄ is a f-colimit diagram.

Remark A.11.2. When f : C → ∆0 is the morphism where C is an ∞-category, then the
notion of f-colimit is same as that of colimit. In this sense, this notion is a generalization of
the usual notion of colimits.
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A.11.2 Kan extensions along inclusions.
Notation A.11.3. Let F : C → D be a functor between ∞-categories. Let C0 be a full
subcategory of C. If C is an object of C, let C0

/C
be the full subcategory of C/C spanned by the

morphisms C ′ → C where C ′ ∈ C0.
Definition A.11.4. [Lur09, Definition 4.3.2.2] Suppose we are given a commutative diagram
of ∞-categories:

C0 D

C D ′

F0

pF

where:
1. p is an inner fibration.

2. The left vertical map is an inclusion of a full subcategory.
We will say F is a p-left Kan extension of F0 at C ∈ C if the induced diagram:

(C0
/C
) D

(C(0)
/C

)◃ D ′

FC

p

exhibits F(C) as a p-colimit of FC.

We will say that F is a p-left Kan extension of F0 if it is a p-left Kan extension of F0 at
every C ∈ C.

Also if D ′ = ∆0, then we just say that F is a left Kan extension of F0 if the above conditions
are satisfied.
Remark A.11.5. The property of left Kan extensions in a naive sense can be formulated in
the following way: Given a diagram:

C0 D

C

F0

F

Then F is a left Kan extension of F0 if for every C ∈ C, F(C) ∼= lim
C0∈C(0)

C

F(C0). Thus a Kan

extension of F0 on the level of objects is just taking colimits on the overcategory C(0)
C .

In the case when C = C(0)◃, the condition of left Kan extensions is equivalent to say that
F is a p-colimit of F0.
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The following proposition is an ∞-categorical generalization of the fact that a morphism
between directed (inverse) systems induce a morphism between colimits (limits).

Proposition A.11.6. (Simplified version of [Lur09, Corollary 4.3.2.16]) Let C and D be two∞-categories. Let i : C(0) ⊂ C be a full subcategory of C. Suppose that for every functor
F0 ∈ Fun(C(0),D), there exists a functor F ∈ Fun(C,D) which is a left Kan extension of
F0. Then the restriction map i∗ : Fun(C,D) → Fun(C(0),D) induced by i admits a section
i! : Fun(C(0),D) → Fun(C,D) whose essential image consists of precisely those functors F
which are left Kan extensions of F|C(0).

Remark A.11.7. Let C(0) = K and C = K◃. The condition of left Kan extension is equivalent
to the condition of colimit (Remark A.11.5). Thus the map i! on the level of objects sends a
functor f : K→ D to its colimit diagram f̃ : K◃ → D.
There is a dual notion of the proposition in terms of right Kan extensions. In the dual setting,
one gets a functorial assignment of limit diagrams.

Another application of Kan extensions is the following proposition.

Proposition A.11.8. [Lur09, Lemma 5.5.2.3] Let H : X▹ × Y▹ → D where D is an infinity
category. Assume the following:

1. For every x ∈ X▹, Hx : Y▹ → D is a colimit diagram.

2. For every y ∈ Y, Hy : X▹ → D is a colimit diagram.

Then let ∞ be the cone point of Y▹, then H∞ : X▹ → D is a colimit diagram.

Remark A.11.9. 1. The above theorem can be formulated in the following naive way:
Assume that:

(a) colimxH(x, y) for y ∈ Y exists
(b) colimyH(x, y) exists
(c) colimx colimyH(x, y) exists.

Then colimy colimxH(x, y) exists and colimx colimyH(x, y) ∼= colimx colimyH(x, y).

A.12 The ∞-categorical Yoneda lemma.
In this section, we recall the notion of presheaves and state the Yoneda Lemma.

Definition A.12.1. [Lur09, Definition 5.1.0.1] Let S be a simplicial set. We denote P(S) :=
Fun(Sop,S) and call it as ∞-category of presheaves on S.

We recall the construction of the Yoneda functor:

Construction A.12.2. [Lur09, Section 5.1.3] Let K be a simplicial set.

1. Let C = C[K].We have a natural map

aK : C[Kop × K]→ Cop × C

by the properties of the fiber product and the functor C.
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2. We have a simplicial functor
bK : Cop × C → Kan

given by
(X, Y)→ Sing |HomC(X, Y)|

3. We have the composition of simplicial functors:

bK ◦ aK : C[Kop × K]→ Kan

4. By adjunction of C and Nsm, we get a map of simplicial sets:

Kop × K→ S

5. This gives us the Yoneda embedding:

j : K→ P(K)

Proposition A.12.3. [Lur09, Proposition 5.1.3.1] Let K be a simplicial set. Then the Yoneda
Embedding j is fully faithful.

An important fact of Yoneda lemma is the fact that P(K) for a simplicial set K is ”freely
generated” by K under small colimits. We make this more precise below.

Notation A.12.4. [Lur09, Notation 5.1.5.1] Let C,D be ∞-categories. Denote FunL(C,D)
be the subcategory of Fun(C,D) spanned by colimit-preserving functors.

Definition A.12.5. [Lur09, Definition 5.1.5.7] Let C be an∞-category. A subcategory C ′ ⊂ C
is said to be stable under colimits if for any small diagram p : K → C ′ which has a colimit
p ′ : K◃ → C, the map p ′ factors through C ′.
Let A be a collection of objects in C, then A generates C under colimits if for any subcategory
C ′′ of C containing A is stable under colimits, then C ′′ ≡ C. A map of simplicial set f : S→ C
generates C under small colimits if the image f(S0) generates C under small colimits.

The above notations help us to recall the theorem which gives a condition when a functor
f : S→ C extends to a functor f̃ : P(S)→ C.

Theorem A.12.6. [Lur09, Theorem 5.1.5.6] Let S be a simplicial set and C be an∞-category
admitting all small colimits. Then the functor j : S → P(S) induces an equivalence of ∞-
categories

FunL(P(S), C)→ Fun(S, C)

Corollary A.12.7. [Lur09, Corollary 5.1.5.8] Let S be a simplicial set. Then the Yoneda
embedding j : S→ P(S) generates S under small colimits.
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A.13 Adjoint functors.
In this section, we recall the notion of adjoint functors. One can define adjoint functors
in terms of correspondences (see [Lur09, Section 5.1, 5.2] for more details). We give an
equivalent definition of adjoint functors in terms of unit transformation. Recall that in classical
category theory, the relationship between a pair of adjoint functors is given by specifying a
unit transformation. This concept can be generalized to ∞-categorical setting as follows:

Definition A.13.1. [Lur09, Definition 5.2.2.7] Suppose given a pair of functors

f : C � D : g

between ∞-categories. A unit transformation for (f, g) is a morphism u : idC → g ◦ f in
Fun(C, C) with the following property: for every pair of objects C ∈ C, D ∈ D, the composition

MapD(f(C), D)→ MapC(g(f(C)), g(D))
u(C)
−−−→ MapC(C, g(D))

is an isomorphism in the homotopy category H.

Definition A.13.2. [Lur09, Proposition 5.2.2.8] Let f : C → D, g : D → C be a pair of
functors between ∞-categories C and D. Then f is left adjoint to g if there exists a unit
transformation u : idC → g ◦ f.

Next we recall the notion of adjointable squares and∞-category of left-adjointable functors
defined in [Lur17, Section 4.7] which help us to state the base change theorems in six functor
formalism.

Definition A.13.3. [Lur17, 4.7.4.13] Suppose we have a diagram of ∞-categories

σ :=

C D

C ′ D ′

G

U V

G ′

(A.6)

which commutes upto specified equivalence

α : V ◦G ∼= G ′ ◦U.

We say σ is left adjointable if G and G ′ admit left adjoints F and F ′ respectively and if the
composite transformation

F ′ ◦ V → F ′ ◦ V ◦G ◦ F ∼= F ′ ◦G ′ ◦U ◦ F→ U ◦ F

is an equivalence.

Remark A.13.4. Some remarks on the definition above:

1. We have the dual notion of right adjointable squares.

2. The notion of left and right adjointable squares in classical category theory is called the
Beck-Chevalley condition.
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Definition A.13.5. [Lur17, Definition 4.7.4.16] Let S be a simplicial set, we define subcate-
gories

FunLAd(S,Cat∞),FunRAd(S,Cat∞) ⊂ Fun(S,Cat∞)

as follows:

1. Let F ∈ Fun(S,Cat∞). Then F ∈ FunLAd(S,Cat∞)(FunRAd(S,Cat∞)) if and only if for
every edge s ∈ s ′ F(s)→ F(s ′) admits a left (right) adjoint.

2. Let α : F → F ′ be a morphism in Fun(S,Cat∞) where F, F ′ ∈ FunLAd(S,Cat∞)
(FunRAd(S,Cat∞)), then α is a morphism in FunLAd(S,Cat∞)(FunRAd(S,Cat∞)) if for
every s ∈ s ′, the diagram

F(s) F(s ′)

F ′(s) F ′(s ′)

(A.7)

is left(right) adjointable.

We have the following important corollary.

Corollary A.13.6. [Lur09, Corollary 4.7.4.18]

1. The ∞-categories FunLAd(S,Cat∞) and FunRAd(S,Cat∞) are presentable and in partic-
ular, they admit all small limits.

2. There is a canonical equivalence of ∞-categories

FunLAd(Sop,Cat∞) ∼= FunRAd(S,Cat∞).

A.14 Localization of ∞-categories.
In classical category, we have the notion of localization of a category. A typical example of a
localization is the construction of derived category which is the localization of the category of
chain complexes under quasi-isomorphisms. We briefly recall the notion of localization in the
context of ∞-categories. The references for this section are [Lan21, Section 2.4] and [Lur18a,
Section 6.3].

Definition A.14.1. Let C be an ∞-category and let S ⊂ C1 be a subset of morphisms in C.
A functor C → C[S−1] is called a Dwyer-Kan localization of C along S if for every ∞-category
D, the restriction functor

Fun(C[S−1],D)→ Fun(C,D)

is fully faithful and the essential image consists of those functors that send S to equivalences.

Let J be the contractible Kan complex consisting of two objects. Then a typical example
of a localization is the following.
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Lemma A.14.2. The anodyne map e : ∆1 → J is localization along the unique morphism
0→ 1.

We list some properties of localization.

Proposition A.14.3. 1. If a localization exists, then it is uniquely determined upto cate-
gorical equivalence.

2. For every S ⊂ C1, there exists a localization of C along S.

Remark A.14.4. The existence of the localization is shown by a functorial construction of
the localization of C along a collection of edges S. At first, we define the simplicial set C ′ as
the pushout of the diagram ∏

s∈S∆
1 C

∏
s∈S J C ′.

∏
e e ′ (A.8)

Note that C ′ is a simplicial set in general and the morphism e ′ is an anodyne. By small object
argument, there exists a functorial factorization of the morphism C ′ → ∆0 as

C ′ i ′−→ C[S−1]→ ∆0

where i ′ is an inner anodyne and C[S−1] is an ∞-category (see [Lur18a, Proposition 4.2.3.1]).
The composition i : C e ′

−→ C ′ i ′
−→ C[S−1] is indeed the localization of C along S. The objects of

C[S−1] by construction are same as objects of C. On the level of edges, we have added inverses
of morphisms in S.

A.15 Presentable ∞-categories.
In this section, we give a brief recall of the notion of presentable ∞-categories from [Lur09,
Section 5.3-5.5]. Presentable ∞-categories are special kind of subcategories of ∞-categories
of presheaves which admit ”small” conditions in order to ensure good supply of limits and
colimits. The adjoint functor theorem is formulated in the setting of presentable∞-categories.

In order to define the notion of presentability, we need to recall the notion of Ind-objects
in the context of ∞-categories. Recall that in classical category theory, Ind-objects are direct
limits over filtered categories. Thus we recall the notion of filtered ∞-categories. In order to
keep track of set-theoretical issues, we need the concept of regular cardinal.

Notation A.15.1. Regular cardinal are such cardinals which are cannot be decomposed into
subsets of smaller cardinal. We shall denote the cardinal ℵ0 by ω. Regular cardinals shall be
denote by κ.

Definition A.15.2. [Lur09, Definition 5.3.1.7] Let κ be a regular cardinal and let C be an∞-category. We say C is κ-filtered if for every small simplicial set K and every map f : K→ C,
there exists a map f̄ : K◃ → C extending f. C is said to be filtered if C is ω filtered.
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Example A.15.3. If C = N(A) where A is a partially ordered set. Then C is κ-filtered if and
only if every κ-small subset of A has an upper bound in A.

We now move to recall the notion of Ind-objects in the context of ∞-categories. Before
recalling the definition, let us briefly recall another description of Ind-objects in the context
of classical category theory. Given any ordinary category C, the category of Ind-objects is the
subcategory of presheaves over C spanned by objects which are functors F : Cop → Sets such
that

F ∼= colimd∈D j(α(D))

where α : D → C is a functor from a filtered category D and j is yoneda embedding. The∞-categorical definition is the generalization of this above description.

Definition A.15.4. [Lur09, Corollary 5.3.5.4] Let C be a small∞-category and κ be a regular
cardinal. Then the∞-category of κ- Ind-objects over C is the full subcategory of P(C) spanned
by functors F : Cop → S such that F is a colimit of the composition

j ◦ p : J → P(C)

where p : J → C is a functor from a κ-filtered ∞-category J and j is the ∞-categorical
Yoneda embedding. We shall denote the ∞-category of κ-Ind-objects by Indκ(C).

Remark A.15.5. The Yoneda embedding j factors through Indκ(C).

We are ready to recall the definition of presentable ∞-category in terms of Ind-objects.

Definition A.15.6. An ∞ category is presentable if there exist a regular cardinal κ and a
small ∞-category D such that there is an equivalence Indκ(D)→ C.

Example A.15.7. The ∞ category S is presentable.

Now we look at the case of representable functors and the adjoint functor theorem. Let
F : Cop → S be a functor which is representable (i.e. it lies in the essential image of the Yoneda
Embedding). It turns out that F preserves limits. This is because we have the decomposition

Cop j
−→ P(Cop) evC−−→ S

which is a composition of preserving limit functors. It turns out that the converse holds when
C is presentable.

Theorem A.15.8. Let C be a presentable ∞ category and let F : Cop → S be a functor. The
following are equivalent:

1. F is representable by an object C ∈ C.

2. The functor F preserves small limits.

Another application of presentable∞-categories is the adjoint functor theorem which gives
criterion of the existence of left and right adjoints in the setting of presentable ∞-categories.

Theorem A.15.9 (Adjoint functor theorem). [Lur09, Corollary 5.5.2.9] Let F : C → D be a
functor between presentable ∞-categories. Then
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1. The functor F has a right adjoint iff it is accessible and preserves small colimits.

2. The functor F has a left adjoint iff it is accessible and preserves small limits.

Remark A.15.10. We did not recall the definition of a functor being accessible. In the
context of presentable ∞-categories, a functor is accessible if it preserved κ-filtered colimits.
For the precise definition, see [Lur09, Definition 5.4.2.5].

Next, we define recall the definition of subcategories of Ĉat∞ which contain presentable∞-categories.

Notation A.15.11. [Lur09, Definition 5.5.3.1] Let Ĉat∞ be the category of ∞-categories.
We define two subcategories PrL,PrR ⊂ Ĉat∞ as follows:

1. The objects in PrL,PrR are presentable ∞-categories.

2. A morphism in PrL are functors between presentable∞-categories which preserve small
colimits.

3. A morphism in PrR are functors between presentable ∞-categories which are accessible
and preserve limits.

Proposition A.15.12. [Lur09, Proposition 5.5.3.13, Theorem 5.5.3.18] The ∞-categories
PrL(PrR) admits all small limits(colimits).

A.16 Abstract descent theory.
In this section, we recall the notion of abstract descent theory. Descent theory is an important
notion of defining sheaves in classical algebraic geometry. One of the main advantages of ∞-
categories is that descent theory works really well. More precisely, presheaves like Derived
categories, K-theory are not sheaves in the classical setting. The language of ∞-categories
allows us to treat them as ∞-sheaves.
At first, we start by recalling the notion of Čech nerve of a morphism.

Definition A.16.1. [Lur09, Proposition 6.1.2.6] Let C be an∞-category and U : N(∆)op → C
be a simplicial object of C. Denote Un := U([n]). Then U is called a groupoid object if for
every n ≥ 0 and for every partition [n] = S ∪ S ′ such that S ∩ S ′ = {s}, then the diagram

Un U(S)

U(S ′) U({s})

is a pullback diagram in C.

Notation A.16.2. Let ∆≤n
+ denoted the full subcategory of ∆+ spanned by objects [k]−1≤k≤n.

Definition A.16.3. [Lur09, Proposition 6.1.2.11] An augmented simplicial object
U+

• : N(∆s)
op → C is a Čech nerve if the augmented simplicial object U+

• is a right Kan
extension of

U+
• |N(∆≤0

+ )op
.
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Remark A.16.4. In the case above, U+
• is determined by the map u : U0 → U−1 upto

equivalence. Thus, we will say U+
• is the Čech nerve of u.

Notation A.16.5. Let C be an ∞-category and let f : X → Y be a morphism in C, then we
shall denote the Čech nerve of f by Y+•,f.

Definition A.16.6. [Lur09, Remark 6.1.2.13] Let U• be a simplicial object of an∞-category
C. Denote |U•| : N(∆+)

op → C be a colimit of U•. We will refer to any such colimit as
geometric realization of U•.

We define the notion of F-descent.

Definition A.16.7. [LZ17, Defintion 3.1.1] Let C be an ∞-category which admits pullbacks.
F : Cop → D be a functor of ∞-categories and f : X+

0 → X+
1 be a morphism in C. Then f

satisfies F-descent if
F ◦ (X+

• )
op : N(∆+)→ D

is a limit diagram where X+
• is the Čech nerve of f.

The notion of F-descent helps us to state the following lemma.

Lemma A.16.8. Let D be an ∞-category which admits products. Let

D3 D2

D1 D0

f32

f31 f20

f10

be a commutative diagram in C. Let F : Dop → D ′ be a functor of infinity categories. Assume
the following:

1. f32 and f31 satisfies F-descent.

2. f20 satisfies F-descent.

Then f10 satisfies F-descent. Also, we have:

limn∈∆op F(D1n)
∼=
−→ limn∈∆op F(D3n)

∼=←− limm∈∆op F(D2m) (A.9)

where D1n := D×n
1 over D0,D2m := D×m

2 over D0 and D3n := D1n ×D0
D2n.

Proof. We define H ′ : N(∆+)
op×N(∆+)

op → D be the functor induced by the taking iterated
fiber products of the commutative square. Define H = F ◦H ′ and apply Proposition A.11.8 to
the functor H. The assumptions in the corollary are the conditions of the colimit conditions
in Proposition A.11.8.
Also notice that D0 is the limit of the H|N(∆)op×N(∆)op . As the simplicial set N(∆)op is sifted
([Lur09, Lemma 5.5.8.4]), the diagonal map is cofinal. This implies Eq. (A.9).
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A.17 Sheaves on ∞-categories.
This section recalls the notion of sheaves in ∞-categorical setting. At first, we recall the
notion of sieves.

Definition A.17.1. [Lur09, Definition 6.2.2.1] Let C be an ∞-category. A sieve on C is a
fullsubcategory C(0) ⊂ C having the property that if f : C → D is a morphism in C and D
belongs to C(0), then C belongs to C(0).
If C ∈ C(0), then a sieve on C is a sieve on the ∞-category C/C.

Definition A.17.2. A Grothendieck topology on an∞-category C consists of a specification,
for each object C of C, of a collection of sieves which we will refer to as covering sieves. A
sieve is a covering sieve are required to possess the following properties:

1. If C is an object of C, then the sieve C/C is a covering sieve on C.

2. If f : C → D is a morphism in C and C(0)
/C

is a covering sieve on D, then f∗C(0)
/C

is a
covering sieve on C.

3. Let C be an object of C, C(0)
/C

is a covering sieve on C and C(1)
/C

is an arbitrary sieve.
Suppose for each f : D→ C belonging to the sieve C(0)

/C
,the pullback f∗C(1)

/C
is a covering

sieve on D. Then C(1)
/C

is a covering sieve on C.

Remark A.17.3. 1. If C is the nerve of ordinary category, then the definition reduces to
the usual notion of a Grothendieck topology on C.

2. For a small ∞-category, we have the following bijection:

{Monomorphisms U→ j(C)}↔ {Covering sieves on C}

for any C ∈ C where j is the Yoneda embedding ([Lur09, Proposition 6.2.2.5]).

Definition A.17.4. [Lur09, Definition 6.2.2.6] Let C be a small ∞-category equipped with
a Grothendieck topology. Let S be the collection of all monomorphism U → j(C) which
correspond to covering sieves over C. An object F ∈ P(C) is a sheaf if it is S-local i.e. for
every G ∈ P(C), we have an isomorphism of topological spaces

MapC(j(C),G)→ MapC(U,G)

for all monomorphism U→ j(C) where U ∈ P(C).

In general, we can define for any arbitrary ∞-category D, a D-valued sheaf as follows;

Definition A.17.5. Let D be any arbitrary ∞-category and F : Cop → D be a functor. Let
C be euqipped with a Grothendieck topology, then F is said to be a D-valued sheaf if for all
C ∈ C and for every covering sieve C(0)

C , we have

F(C) = limF |C(0)
C

op .
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Generally, we are given a collection of morphisms and it is useful to know when it is
possible to construct a Grothendieck topology generated by these collection of morphisms
called as covering morphisms.The following proposition gives the possibility of conditions to
get a Grothendieck topology.

Proposition A.17.6. [Lur18b, Prop A.3.2.1] Let C be an ∞-category and S be a collection
of morphisms in C. Assume that:

1. The collection of morphisms S contains all equivalences and is stable under composition.

2. The ∞-category C admits pullbacks and S is stable under pullbacks.

3. The ∞-category C admits finite coproducts and S admits finite coproducts.

4. Finite coproducts in C are universal. That is, given the pullback diagram:

∐
i≤i≤nCi ×D D ′ D ′

∐
1≤i≤nCi D,

we have ∐
1≤i≤n

Ci ×D ′ D
∐ ∐

1≤i≤n
(Ci ×D ′ D).

Then there exists a Grothendieck topology on C defined as follows: A sieve C(0)
C ⊂ CC over any

object C is a covering sieve if it contains a finite collection of morphisms {Ci → C}1≤i≤m such
that

∐
1≤i≤mCi → C is in S.

The next proposition gives us an equivalent condition when sheaf condition is same as
using descent along Čech covers.

Proposition A.17.7. [Lur18b, Prop A.3.3.1] Let C be an ∞-category and S be a collection
of morphisms. Assume that C and S satisfy conditions of Proposition A.17.6 together with the
following additional hypothesis:

1. Coproducts in C are disjoint, i.e., let ∗ the initial object of C, then the cocartesian
diagram

∗ C

C ′ C ′∐C

is cartesian.

Let D be an arbitrary category and F : Cop → D be a functor. Then F is a D-valued sheaf iff:
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1. F preserves finite products.

2. Let f : U0 → X be a morphism in C which lies in S. Let U• be the Čech nerve associated
to the morphism f, regarded as an augmented simplicial object of C. Then the composite
map

N(∆+)
op U•−−→ Cop F

−→ D

is a limit diagram. In other words, F(X) is the totalization of the cosimplicial object
[n]→ F(Un) where Un = Un+1X .

The Grothendieck topologies that we consider in the categories that we are interested
in will satisfy the conditions Proposition A.17.6 and Proposition A.17.7. Thus the sheaf
condition reduces to checking descent along Čech covers.

A.18 Stable ∞-categories.
In this section, we recall the notion of stable ∞-categories. Stable ∞-categories incorporate
the notions of triangulated category in the ∞-language. They also incorporate the notions
of stable homotopy theory, namely fiber and cofiber sequences are same. One of the main
important examples of stable∞-categories are the∞-derived category D(A) associated to an
abelian category and the ∞-category of spectra Sp. We end the section studying properties
of presentable stable ∞-categories.

We start by recalling some terminologies to define stable ∞-categories.

Definition A.18.1. [Lur17, Definition 1.1.1.1] Let C be an ∞-category. A zero object of C is
both an initial and final object of C. A category C is pointed if it contains a zero object.

Remark A.18.2. If C is an additive category with a zero object 0 in the classical sense, then
0 is zero object in the ∞-category N(C) in the above definition.

We recall the notion of fiber and cofiber sequences.

Definition A.18.3. [Lur17, Definition 1.1.1.4] Let C be an ∞-category. A triangle in C is a
square ∆1 × ∆1 → C of the form

X Y

0 Z.

It is a (co)fiber sequence if the square is a (pushout)pullback.

Remark A.18.4. If C is the nerve of an ordinary category C, the square in the above definition
is a fiber (cofiber) sequence is equivalent of saying that X (Z) is the kernel(cokernel) of the
morphism Y → Z (X→ Y).

Definition A.18.5. [Lur17, Definition 1.1.1.6] Let C be a pointed ∞-category and let f :
X→ Y be a morphism in C. Then the fiber of f is a fiber sequence of the form:
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W X

0 Y

f

Dually, a cofiber of f is a cofiber sequence of the form

X Y

0 Z

f

Remark A.18.6. As explained in previous remark, in the context of nerve of ordinary cate-
gories, fiber (cofiber) of f is kernel (cokernel) of f.

With these notions, we define the notion of stable ∞-categories.

Definition A.18.7. [Lur17, Definition 1.1.1.9] An ∞-category is stable if the following con-
ditions hold:

1. C is pointed.

2. Every morphism in C admits fiber and cofiber.

3. A triangle in C is a fiber sequence iff it is a cofiber sequence.

Remark A.18.8. If C = N(C), then Remark A.18.2, Remark A.18.6 and Remark A.18.4
implies that the C is stable if and only if C has a zero object, a morphism in C admits a kernel
and cokernel and coim(f) ∼= im(f) for any morphism f : X→ Y in C.

Remark A.18.9. Some remarks on stable ∞-categories:

1. Any morphism in a pointed ∞-category admitting fibers and cofibers and it is deter-
mined uniquely upto equivalence. In particular, we have two maps:

fib : Fun(∆1, C)→ C and cofib : Fun(∆1, C)→ C

which on the level of objects sends morphisms to its fiber and cofiber respectively.

2. The main examples of stable ∞-categories are derived ∞-categories ([Lur17, Definition
1.3.2.7]) and the ∞-category of spectra ([Lur17, Definition 1.4.3.1]). The homotopy
category of the derived ∞-category is the classical derived category.

As triangulated categories have the notion of shifts, we can define the notion of shift
functors in pointed ∞-categories.

Definition A.18.10. [Lur17, Remark 1.1.2.6] Let C be a pointed ∞-category. We define the
suspension(loop) functor Σ : C → C on the level of objects as:

Σ(X) := cofib(X→ 0), Ω(X) := fib(0→ X).
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Notation A.18.11. [Lur17, Notation 1.1.2.7] In a pointed ∞-category, we denote for an
object X ∈ C,

X[n] :=

{
ΣnX n ≥ 0
Ω−nX n < 0

The following proposition suggests that stable ∞-categories are ∞-categorical generaliza-
tions of triangulated categories.

Proposition A.18.12. [Lur17, Theorem 1.1.2.14] If C is a stable ∞-category, then Σ,Ω are
equivalences. Morever, the homotopy category hC is a triangulated category.

In context of triangulated categories, we have the notion of exact functors which are
functors between categories mapping distinguished triangles to distinguished triangles. We
have an analog notion in the setting of stable ∞-categories.

Definition A.18.13. [Lur17, Section 1.1.4] Let C, C ′ be stable∞-categories and let F : C → C ′

sending zero objects to zero objects. Then we say F is exact if F carries fiber sequences to
fiber sequences.

Notation A.18.14. We denote CatEx∞ to be the full subcategory of Cat∞ whose objects are
stable ∞-categories and morphisms are exact functors.

Proposition A.18.15. [Lur17, Theorem 1.1.4.4] The ∞-category CatEx∞ admits all small
limits and filtered colimits.

Now we restrict ourselves to the setting of presentable stable ∞-categories. At first, we
have the following lemma:

Lemma A.18.16. Let F : C → D be a morphism in PrL where C and D are stable∞-categories.
Then F is an exact funtor.

Proof. As F is a morphism in PrL, then F by definition preserves all colimits. Thus F preserves
cofiber sequences, hence F is exact.

Notation A.18.17. We denote PrLstb ⊂ PrL the full subcategory of presentable stable ∞-
categories.

Remark A.18.18. By Proposition A.18.15, we see that PrLstb admits all limits.
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APPENDIX B

ALGEBRA OBJECTS IN HIGHER
CATEGORY THEORY

In this chapter, we recall the notion of ∞-operads and notion of algebra and module objects
associated to an ∞-operad defined in [Lur17]. We also recall the fact that the category of
presentable stable ∞-categories admits a symmetric monoidal structure. This shall led us to
define the category of module objects Mod(PrLstb) which is needed for defining the enhanced
operation map.

B.1 ∞-operads.
A symmetric monoidal category is a category C with an unit object 1 and a functor: ⊗ :
C×C → C with the unital, commutativity and associativity constraints. The main problem in
this definition is that we have to keep track of isomorphisms all the time while dealing these
objects. In the setting of ∞-categories, these conditions even get more complicated.

The notion of ∞-operads help us to encode these relations in a coherent manner. In the
language of higher category theory, symmetric monoidal ∞-categories are specific examples
of ∞-operads. We recall the definition and properties of ∞-operads. These notions are
motivated from the classical notion of colored operads (see [Lur17, Definition 2.1.1.1])
At first, we recall the definition of category of pointed finite sets Fin∗.

Definition B.1.1. [Lur17, Notation 2.0.0.1] The category Fin∗ is defined as follows:

1. Objects: ⟨n⟩ = {∗, 1, 2, . . . , n− 1, n} where ⟨0⟩ = {∗}. Denote ⟨n⟩0 = ⟨n⟩− {∗}.

2. Morphisms: α : ⟨n⟩→ ⟨m⟩ is a map of finite sets ⟨n⟩0 → ⟨m⟩0 and α(∗) = ∗.

Remark B.1.2. 1. For every 1 ≤ i ≤ n, let ρi : ⟨n⟩→ ⟨1⟩ be the map given the formula:

ρi(j) =

{
1 if i = j
0 otherwise
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2. Note that a morphism α : ⟨n⟩→ ⟨m⟩ in Fin∗ may take elements of ⟨n⟩ other than ∗ to
∗. Also there is no ordering condition in the morphism.

Definition B.1.3. [Lur17, Definition 2.1.1.8] We say a morphism f : ⟨m⟩ → ⟨n⟩ in Fin∗ is
inert if for i ∈ ⟨n⟩0, the inverse image f−1{i} has exactly one element.

Definition B.1.4. [Lur17, Definition 2.1.10] An ∞-operad is a functor p : O⊗ → N(Fin∗)
between ∞-categories which satisfy the following conditions:

1. For every inert morphism f : ⟨m⟩ → ⟨n⟩ and every object C ∈ O⊗
⟨m⟩, there exists a

p-coCartesian morphism f̄ : C→ C ′ lifting f where C ′ ∈ O×
⟨n⟩. In particular f induces a

functor f! : O⊗
⟨m⟩ → O⊗

⟨n⟩.

2. Let f : ⟨m⟩ → ⟨n⟩ be a morphism in Fin∗ and C ∈ O⊗
⟨m⟩ and C ′ ∈ O⊗

⟨n⟩ be ob-
jects. Let MapfO⊗(C,C ′) be the union of the connected components of the simplicial set
MapO⊗(C,C ′) which lie over f. Choose p-coCartesian lifts C ′ → C ′

i over morphisms ρi(
which are inert). Then:

MapfO⊗(C,C
′)→ n∏

i=1

Mapρ
i◦f

O⊗ (C,C ′
i)

is a homotopy equivalence.

3. For every finite collection of objects C1 · · · , Cn ∈ O⊗
⟨1⟩, there exists an object C ∈ O⊗

⟨n⟩
and a collection of p-coCartesian morphisms C→ Ci covering ρi : ⟨n⟩→ ⟨1⟩.

By abuse of notation, O⊗ shall be called an ∞-operad with the functor p and the properties
implicitly assumed.

Remark B.1.5. [Lur17, Remark 2.1.1.12] We shall denote O⊗
⟨1⟩ = O as the underlying ∞-

category of O×.

Example B.1.6. Below we state some examples of ∞-operads:

1. We shall denote the simplicial set N(Fin∗) by Comm⊗. We call this the commutative∞-operad.

2. We shall denote the simplicial subset of N(Fin∗) spanned by inert morphisms by Triv⊗.
We call this as the trivial ∞-operad.

We now proceed defining map of ∞-operads.

Definition B.1.7. [Lur17, Definition 2.1.2.7] Let O⊗,O ′⊗ be ∞-operads. A map of ∞-
operads is a map of simplicial sets f : O⊗ → O ′⊗ satisfying the following conditions:

1. The diagram

O⊗ O ′⊗

N(Fin∗)

f

98



B.2 - Algebra objects. SH for algebraic stacks.

commutes.

2. f sends inert morphisms in O⊗ to inert morphisms in O ′⊗. (Inert morphisms in O⊗ are
those morphisms which when mapped to N(Fin∗) are inert.)

Definition B.1.8. [Lur17, Definition 2.1.2.10] A map of operads f : O⊗ → O ′⊗ is said to be
a fibration of ∞-operads if f is a categorical fibration.

Definition B.1.9. [Lur17, Definition 2.1.2.13] Let p : C⊗ → O⊗ be a categorical fibration of∞-categories and O⊗ be an∞-operad. Denote q to be the composition C⊗ → O⊗ → N(Fin∗).
If q exhibits C as an ∞-operad, we say p is a coCartesian fibration of ∞-operads.
We also say p exhibits C as an O-monoidal category.

Definition B.1.10. [Lur17, Example 2.1.2.18] A symmetric monoidal ∞-category is an ∞-
category C⊗ equipped with a coCartesian fibration of ∞-operads p : C⊗ → N(Fin∗). We will
refer to the fiber C⊗

⟨1⟩ as the underlying category of C⊗ which shall often be denoted by C.

Remark B.1.11. There is another way to formulate the notion of symmetric monoidal ∞-
category. A symmetric monoidal ∞-category is a coCartesian fibration of simplicial sets
p : C⊗ → N(Fin∗) with the following property:
For each n ≥ 0, the maps {ρi : ⟨n⟩ → ⟨1⟩} induce functors ρi! : C

⊗
⟨n⟩ → C := C⊗

⟨1⟩ which deter-
mine an equivalence C⊗

⟨n⟩ → (C)n.

In particular, the map ρ1 : ⟨2⟩→ ⟨1⟩ produces a map C×C → C which satisfies associativity
and other conditions upto homotopy.

Example B.1.12. Let C = Vectk to be the category of k-vector spaces. Then one can define
a category Ṽectk as follows:

1. Objects are finite sequences of vector spaces (V!, V2, · · · , Vn).

2. A morphism between (V1, V2, · · · , Vn)→ (W1,W2, . . . ,Wm) consists of a map α : ⟨n⟩→
⟨m⟩ and a collection of morphisms

{ϕj ∈ Map(⊗i∈I,i∈α−1(j)Vi,Wj)}1≤j≤m.

Then the forgetful map N(Ṽectk)→ N(Fin∗) makes N(Ṽectk) into a symmetric monoidal ∞-
category. Similarly, it is possible to visualize any symmetric monoidal category as a symmetric
monoidal ∞-category.

B.2 Algebra objects.
We now move to defining algebra objects associated to an∞-operad. Recall that vector spaces
V are infact free modules over the field k. V can be an algebra too i.e. V has a ring structure.
More formally, V is an algebra if it has an identity element i.e. 1→ V and a map V×V → V .
An algebra object associated to an ∞-operad is a generalization of the statement above.
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Definition B.2.1. [Lur17, Definition 2.1.3.1] Let p : C⊗ → O⊗ be a fibration of ∞-operads.
Let α : O ′⊗ → O⊗ be a map of ∞-operads. Define AlgO ′

/O(C) to be the full subcategory
of FunO⊗(O,⊗, C) spanned by maps of ∞-operads. An object of AlgO ′

/O(C) is said to be an
algebra object associated to the ∞-operad.
If O ′⊗ = O⊗, then we denote AlgO,/O(C) as AlgO(C).
If O ′⊗ = O× = N(Fin∗), we denote AlgO(C) as CAlg(C). We refer CAlg(C) as the∞-category
of commutative algebra objects of C.

Remark B.2.2. In the example of the ∞-operad N(Ṽectk)→ N(Fin∗), an algebra object is
equivalent to giving a vector space V which is a k-algebra.

We briefly recall of how to associate symmteric monoidal ∞-categories from ∞-categories
admitting finite coproducts. At first, given an ∞-category C, we associate an ∞-operad C

⨿
.

This turns out to be symmetric monoidal in case it admits finite coproducts.

Notation B.2.3. [Lur17, Construction, 2.4.3.1] We define a category Γ∗ as follows:

1. Objects: Pairs (⟨n⟩, i) where i ∈ ⟨n⟩0.

2. A morphism in Γ∗ from (⟨m⟩, i) to (⟨n⟩, j) is a map α : ⟨m⟩→ ⟨n⟩ where α(i) = j.

Given a simplicial set C, we define a new simplicial set C⨿ equipped with a map C
⨿ →

N(Fin∗) with the following universal property. For any simplicial set K with a map K →
N(Fin∗), we have the following bijection of Hom-sets:

HomN(Fin∗)(K, C
⨿) = HomSets∆(K×N(Fin∗) N(Γ∗), C).

Theorem B.2.4. [Lur17, Proposition 2.4.3.3] Let C be an ∞-category. Then C⨿ is an∞-operad.

Corollary B.2.5. Let C be an ∞-category, then C⨿ is a symmetric monoidal ∞-category iff
C admits finite coproducts.

Remark B.2.6. [Lur17, Remark 2.4.3.4] There is a dual theory for ∞-categories admitting
finite products and Cartesian∞-operads. In that case, we define a new simplicial set C× which
is a symmetric monoidal ∞-category when C admits finite products. The two constructions
C× and C⊗ are canonically equivalent once the ambient∞-category has zero object and admits
finite products and coproducts.

The following theorem illustrates an important property of the functor (−)⨿

Theorem B.2.7. [Lur17, Corollary 2.4.3.10, Theorem 2.4.3.18] Let C be an ∞-category
admitting finite coproducts which is realized as the underlying ∞-category of C⨿. Then

1. There is an equivalence of ∞-categories CAlg(C) ∼= C.

2. For every ∞-operad D, a functor C → CAlg(D) is induced from a functor of ∞-operads
C⨿ → D⊗

Theorem B.2.8. [Lur17, Proposition 3.2.2.1] Let C⊗ be a symmetric monoidal ∞-category
whose underlying ∞-category C admits limits. Let O⊗ be an ∞-operad. Then the ∞-category
AlgO(C) admits limits.
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B.3 Symmetric monoidal structure on PrLstb
In this section, we recall results relating to the notion of symmetric monoidal structure on
the ∞-category of PrLstb. This comes from the notion of tensor product for presentable ∞-
categories. The definition of tensor product is technical. The explicit construction is discussed
in [Lur17, Section 4.8].

Notation B.3.1. [Lur17, Proposition 4.8.1.17]. Let C and D be presentable ∞-categories.
Then we denote:

C ⊗ D := RFun(Cop,D)

Remark B.3.2. The tensor product is defined in [Lur17, Section 4.8] via defining the notion
of tensor products on the category of presheaves and ind-objects.

The bifunctor
⊗ : PrL×PrL → PrL

preserves colimits separately in each variable. Also, we get that PrL is a closed monoidal
category with internal hom given by LFun(C,D) for C and D presentable ∞-categories.

The following corollary explictly describes what are the commutative algebra objects of
PrLstb.

Corollary B.3.3. [Lur17, Corollary 4.8.2.19] There exists a symmetric monoidal structure
on PrLstb. The commutative algebra objects of PrLstb are symmetric monoidal ∞-categories
which are presentable, stable and the tensor product preserves colimits in each variable. The∞-category Sp is an initial object in CAlg(PrLstb).

B.4 Module objects.

This section is devoted to defining module objects associated to an∞-operad. More precisely,
given a fibration of ∞-operads C⊗ → O⊗, the previous section defines the ∞-category of
algebra objects Alg/O(C). Given any object A ∈ Alg/O(C), there is a notion of module objects
over A which form an∞-category ModO

A (C). More precisely, there exists a map of∞-operads

ModO(C)⊗ → O⊗

In this section, we define the underlying category of module objects of a symmetric
monoidal ∞-category via defining algebra objects with respect to an ∞-operad Pf.

Definition B.4.1. [Rob14, Section 9.4.1.2] We define the colored operad Pf as follows:

1. The objects are two colors a and m.
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2.

MulPf({Xi}i∈I, Y) =


{∗} if Xi = a ∀i ∈ I , Y = a
{∗} if ∃j ∈ I with Xj = m and Xi = a ∀i ∈ I− {j} , Y = m
ϕ otherwise

Notation B.4.2. [Rob14, Section 9.4.1.2] We denote Pf⊗ to be the operadic nerve of Pf. In
other words,

Pf⊗ := N⊗(Pf).

It is an ∞-operad because Pf as a simplicial colored operad is fibrant.

Definition B.4.3. Let C⊗ be a symmetric monoidal ∞-category with the underlying ∞-
category to be C. Then we define

Mod(C) := ModComm(C) := AlgPf⊗(C)

Remark B.4.4. There is a general definition of module objects ModO⊗
(C)⊗ with respect to

a fibration of ∞-operads C⊗ → O⊗. This is defined in [Lur17, Chapter 3, Section 3.3]. For
the sake of our purposes, we just need to know the underlying ∞-category of module objects
when O⊗ := Comm.

In the rest of the section, we explain how a morphism A → B of commutative algebra
objects in CAlg(C) visualizes the pair (A,B) as an object in Mod(C). At first, we give an
alternate description of the ∞-operad ∆[1]⨿.

Lemma B.4.5. [Lur17, 2.4.3.1] The objects and morphisms of the ∞-operad ∆[1]⨿ can be
described in the following way:

1. Objects are pairs (⟨n⟩, S) where S is a subset of ⟨n⟩+.

2. Morphisms from (⟨n⟩, S) → (⟨m⟩, T) is a morphism α : ⟨n⟩ → ⟨m⟩ such that α(S) ⊂
T ∪ {0}.

Definition B.4.6. We define a map of ∞-operads upf : Pf⊗ → ∆[1]⨿ as follows:
We identify Pf⊗ as a subsimplicial set of ∆[1]⨿ by identifying a = 0 and m = 1. For morphisms,
we only consider the morphisms α : ⟨n⟩→ ⟨m⟩ such that α−1(T) ∩ S→ T is a bijection.

Let f : A → B be a morphism of commutative algebra objects in a symmetric monoidal∞-category. Then we can visualize f as an object in Fun(∆[1],CAlg(C)). By the universal
property of ∆[1]⨿, f corresponds uniquely to a morphism ∆[1]⨿ → C⊗. Combining with upf,
we get a map

Pf⊗ → C⊗

This yields us an object in Mod(C). On the level of objects, the morphism f is sent to the
pair (A,B).
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B.5 Inversion of objects in symmetric monoidal ∞-categories.
In this section, we briefly recall about inversion of objects in symmetric monoidal∞-categories.
More precisely, given any symmetric monoidal∞-category C⊗ and given X an object in C⊗, we
can associate a symmetric monoidal ∞-category C⊗[X−1] and a symmetric monoidal functor
C⊗ → C⊗[X−1] with the fact that this functor sends X to an invertible object in C⊗[X−1] and
it satisfies the universal property with respect to inverting X.

The construction of C⊗[X−1] is explained in detail in [Rob14, Chapter 4]. In the case of
stable homotopy theory, the inversion can be defined using the notion of spectrum objects in
[Rob14, Chapter 4, Section 4.2].

We begin by recalling the notion of invertible objects, and then defining C⊗[X−1] and end
with stating the universal property.

Definition B.5.1. [Rob14, Section 4.1] Let C⊗ be a symmetric monoidal ∞-category and
X ∈ C an object, then X is said to be invertible if there exists X∗ ∈ C such that X ⊗ X∗ ∼=
X∗ ⊗ X ∼= u where u is the unit object of C.

Turns out that if there is some condition on the object X, the category C⊗[X−1] can be
defined quite conceretly. We need X to be ”symmetric”. This defined below.

Definition B.5.2. [Rob14, Definition 4.2.7] Let C⊗ be a symmetric monoidal ∞-category.
An object X ∈ C is said to be symmetric if there exists a 2-equivalence between the cyclic
permutation of X ⊗ X ⊗ X and the identity permutation of X ⊗ X ⊗ X, i.e. there exists a
2-simplex in C

X⊗ X⊗ X X⊗ X⊗ X

X⊗ X⊗ X .

σ

id id (B.1)

With this notion, one can define the underlying category C[X−1] of the symmetric monoidal∞-category C⊗[X−1].

Notation B.5.3. Let C be symmetric monoidal ∞-category. Then we define:

C[X−1] := colimModC⊗ (Cat∞)(· · ·
⊗X
−−→ C ⊗X

−−→ C ⊗X
−−→ · · · ) (B.2)

The following is the main proposition of this section.

Proposition B.5.4. [Rob14, Corollay 4.2.13] There exists a symmetric monoidal∞-category
C⊗[X−1] whose underlying∞-category is C[X−1] defined in Notation B.5.3. The canonical map
C⊗ → C⊗[X−1] sends X to an invertible object and the ∞-category C⊗[X−1] is universal with
respect to this property.

Remark B.5.5. Some remarks on the above proposition are as follows:

1. In [Rob14, Chapter 4, Section 4.1], one defines the symmetric monoidal ∞-category
C⊗[X−1] by using the notion of FreeC⊗(−).
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2. The proof of Proposition B.5.4 follows from a statement of stabilization on the level
of ordinary symmetric monoidal categories. For a symmetric monoidal category C and
X ∈ C be an object with some conditions analogue to symmetric, one can define StabX(C)
as the colimit of tensoring via X in the similar fashion. It satisfies the similar properties.
This is actually [Rob15, Theorem 4.2.5].
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APPENDIX C

MOTIVIC STABLE HOMOTOPY
THEORY OF SCHEMES

In this chapter, we recall the definition and six operations of motivic stable homotopy theory
of schemes explained in [Rob14].

C.1 Unstable A1-Homotopy Theory of Schemes.
In this section, we define the unstable motivic homotopy theory of a Noetherian scheme S
with finite Krull dimension.
The main idea is to do ”homotopy theory with schemes”. As the category of schemes does
not admit all colimits, we enlarge the category and also we want to make sure that A1 which
is the analogue of [0, 1] in the world of algebraic geometry is contractible. The category H(S)
these conditions. We briefly recall the construction (see [Rob14, Section 5.1] for details) as
follows:

1. Let S be a Noetherian scheme of finite Krull dimension. Let Smft
S be the category of

smooth schemes of finite type over S. Consider the (∞, 1)-category N(Smft
S ).

2. We consider the Nisnevich topology on Smft
S . The pairs (V → X,U → X) form a basis

of Nisnevich topology where the above morphisms form the Nisnevich distinguished
square. This topology forms an (∞, 1)-site in N(Smft

S ).

3. We consider the very big (∞, 1)-category of presheaves

Pbig(N(Smft(S))) := Fun(N(Smft(S)), Ŝ).

By [Lur09, Section 5.1], it is the free completion of N(Smft
S ). By the Yoneda embedding

j : N(Smft
S )→ Pbig(N(Smft

S )), we identify a scheme X with j(X).

4. We restrict to those presheaves which are sheaves with respect to the Nisnevich topology
as described in the second point. We denote ShbigNis(Smft

S ) ⊂ Pbig(N(Smft
S )) be the very

105



SH for algebraic stacks. C.2 - The (∞, 1)-category H(S)∧∗ .

big (∞, 1)-category of sheaves with respect to the Nisnevich topology. An example of
sheaves are the representable sheaves j(X) for any scheme X ∈ Smft

S .

5. The last step of this construction is to invert the affine line A1. For this we want to
restrict ourselves to sheaves which satisfy A1-invariance i.e. sheaves F which for every
scheme X, satisfy F(X) → F(X × A1) is an equivalence. This is achieved by localization
process. We localize with respect to class of projection maps {(X×A1)→ X}. Let H(S)
be the localization of ShbigNis(Smft

S ) with respect to the class of these projection maps.

Remark C.1.1. The above construction is functorial in Schfd and thus we have a functor

H : Schopfd → Ĉat∞
where Schfd is the nerve of the category of Noetherian schemes with finite Krull dimension.
It is an ∞-sheaf when Schfd is equipped with Nisnevich topology ([Hoy17, Proposition 4.8]).

C.2 The (∞, 1)-category H(S)∧∗ .
Notation C.2.1. Denote H(S)∗ to be the (∞, 1)-category of pointed motivic objects. This
makes sense as H(S) is a presentable (∞, 1)-category and thus admits a final object.

Thus, there exists a pair of adjoint functors:

()+ : H(S)↔ H(S)∗ : Frgt

where ()+ is defined as ()+ : X→ X+ := X
∐

∗ and the other is the forgetful functor.

There is a technical lemma which helps us to inherit the cartesian product in H(S) to
a symmetric monoidal structure on H(S)∗. The following proposition gives us the way to
achieve the following.

Proposition C.2.2. [Rob14, Corollary 5.2.1] The functor

()∗ : PrL → PrLpt

which is a left adjoint to the inclusion functor PrLpt ↪→ PrL induces a functor

()∧∗ : CAlg(PrL)→ CAlg(PrLpt)

which is a left adjoint to the inclusion functor. The functor on the underlying ∞-categories
is the functor ()∗.

Notation C.2.3. [Rob14, Remark 5.2] Let C be an∞-category which admits finite products.
Then we denote the symmetric monoidal ∞-category

C∧
∗ := (C×)∧∗

where C× is the symmetric monoidal ∞-category associated to the ∞-category C⊗.
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Definition C.2.4. We denote the pointed motivic homotopy category

H(S)∧∗ := (H(S)×)∧∗ (C.1)

whose underlying ∞-category is H(S)∗ ([Lur17, Proposition 2.4.1.5 (4)]).

Remark C.2.5. The definition of H∧
∗ is functorial in Schfd. Thus

H∧
∗ : Schopfd → CAlg(Ĉat∞)

C.3 The stable motivic homotopy theory.
The stable motivic homotopy theory is defined by inverting the (P1,∞) spectrum in the∞-category H(S)∧∗ . The definition is as follows:

Definition C.3.1. Let S be a base scheme. The stable motivic A1∞-category over S is the
underlying ∞-category of the stable presentable symmetric monoidal ∞-category SH⊗(S)
defined by the formula

SH⊗(S) := H∧
∗ (S)[(P1,∞)−1] (C.2)

It is denoted by SH(S). Here the inversion of (P1,∞) is in the sense of [Rob14, Chapter 4]
which we recalled in Proposition B.5.4.

Remark C.3.2. Some remarks on the definition are as follows:

1. The homotopy category hSH⊗(S) coincides with Morel Voevodsky’s definition of stable
motivic category. This is proved in [Rob14, Theorem 4.3.1].

2. The pointed space (P1,∞) is symmetric and hence inverting the object gives a stable∞-category.

C.4 Functoriality and six operations of SH⊗(S)

In this section, we state functoriality of SH⊗ and state the six operations. The main reference
is [Rob14, Chapter 9]. The results are already proven in the level of homotopy categories of
SH⊗ due to [Ayo07a],[Ayo07b]. We only state the formalism of six operations on the level of∞-categories as described in [Rob14]. At first, we state proper and smooth base change. We
also recall the localization property and briefly recall the construction of the transformation
αf and purity transformation ρf. We end the section by stating the results in a single theorem.

C.4.1 Smooth and proper base change.
Proposition C.4.1. [Rob14, Example 9.4.6] For g a smooth morphism of schemes, we have
a left adjoint of g∗ denoted by g#. The smooth(proper) base change is the following statement:
If

X ′ Y ′

X Y

f ′

g ′ g

f

(C.3)
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is a cartesian square of base schemes with g being smooth (proper). We have the following
equivalences:

Ex(∆∗
#) : f

′∗g ′
#

∼= g#f
∗ ( Ex(∆∗

∗) : f
′∗g ′

∗
∼= g∗f

∗ ) (C.4)

Remark C.4.2. We also have the exchange transformation Ex(∆∗
∗) : f

′
∗g

∗ ∼= g∗f∗ which is an
isomorphism if g and g ′ are smooth.

An equivalent way of formulating the projection formula is the following: If f : S ′ → S is
a separated morphism of finite type, the map

f! : SH(S)→ SH(S ′) (C.5)

is a map of SH⊗(S)- modules (Eq. (4.4)). The proof of this statement follows from the
projection formula for smooth and proper maps:

Proposition C.4.3. [Rob14, Example 9.4.2] (Projection Formula)Let f : Y → X a smooth(proper)
map. For E, E ′ ∈ SH(X) and B ∈ SH(Y), we have the following equivalences:

1.
f#(B⊗ f∗(E)) ∼= (f#B⊗ E) (C.6)

when f is smooth.

2.
f∗(B⊗ f∗(E)) ∼= (f∗B⊗ E) (C.7)

when f is proper.

Remark C.4.4. Assuming smooth and proper base change, one can prove projection formulas
and base change for f!. The procedure of proving such will be explained by the enhanced
operation map in Appendix D.

C.4.2 Localization and homotopy invariance.
In this subsection, we recall the localization property and homotopy invariance. We restate
the statement of localization property and homotopy invariance.

Proposition C.4.5. [Rob14, Theorem 9.4.25] Let i : Z → X be a closed immersion of base
schemes. Let U := X− Z be complement of Z and j : U→ X be the open immersion.

1. The pushforward i∗ is conservative.

2. For any object E ∈ SH(X), the square

j#j
∗(E) E

0 i∗i
∗(E)

(C.8)

is a fiber/cofiber sequence. In other words, we say SH satisfies localization property.
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Remark C.4.6. 1. This is a reformulation of classical localization property stated in
[MV99].

2. A consequence of the localization property is the fact that i∗ is fully faithful.

3. Being a fiber/cofiber sequence implies that for any morphism u : E→ F in SH(S), then
u is an equivalence iff j∗(u), i∗(u) are equivalences.

We now restate the homotopy invariance property.
Theorem C.4.7. [Rob14, Example 9.4.26] Let π : A1X → X be the usual projection map, then
π∗ is fully faithful. We refer to this as SH satisfies homotopy invariance.
Remark C.4.8. Some remarks on the homotopy invariance:

1. As π is smooth, via smooth projection formula verifying homotopy invariance is equiv-
alent to verify π#(π∗(1X))→ 1X is an equivalence.

2. The homotopy invariance follows from the definition of A1 invariance imposed in defi-
nitions of H and SH.

C.4.3 Construction of αf and purity transformation ρf.
We recall the construction of the map αf and the purity transformation ρf. This shall be
important in constructing the six operations on the level of stacks.

1. The morphism αf: Let f : S ′ → S be a morphism of schemes. Factorize f = pj

where j : S ′ → S ′′ is open immersion and p : S ′′ → S is proper. At first, we have the
commutative square:

S ′ S ′

S ′ S ′′

id

id j

j

(C.9)

The smooth exchange transformation Ex(∆#∗) gives us a morphism

id∗ j# → id# j∗.

Thus we construct the natural transformation αf as follows:

αf : f! = p∗j# → p∗j∗ = f∗. (C.10)

It is obvious via the definition of f! that αf is an equivalence when f is proper.

2. The purity transformation ρf: Let f : X → S be a smooth morphism. We consider
the cartesian square of schemes

X

X×S X X

X S.

δ

p

q f

f

(C.11)
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Then we define
(Twf)−1 := Σf := p#δ∗. (C.12)

We construct the map ρf in two steps:

(a) If f is proper, then using Ex(∆#∗), we have

αf : f# → f#q∗δ∗
Ex(∆#∗)
−−−−−→ f∗p#δ∗ = f∗ ◦ Σf. (C.13)

(b) If f is separated morphism of finite type, there exists a similar exchange transfor-
mation Ex(∆∗!), thus using the same argument above,we get the map:

ρf : f# → f!Σf.

Remark C.4.9. The above sketch of construction of αf and ρf is explained in [CD19, Chapter
2].

Proposition C.4.10. [Rob14, Theorem 9.4.38] The functor SH satisfies purity property for
smooth and separated morphisms of finite type i.e.. the Thom transformation Σf and the
natrual transformation ρf are equivalences.

We also recall another description of the natural transformation Σf.

Theorem C.4.11. [Rob14, Theorem 9.4.34] Let

Z X

S

ig

p (C.14)

where i is a closed immersion of smooth S-schemes. Then the deformation to the normal cone
produces an equivalence

X

X/Z
:= p#(i∗(1Z)) ∼= (g ◦ q)#(e∗(1Z)) =: ThS(NZX)

in SH⊗(S) where g : NZX→ X is the normal bundle and e : Z→ NZX is the zero section.

The proof of the proposition is a consequence of the following proposition on the level of
H(S).

Proposition C.4.12. Consider the commutative diagram of schemes in Eq. (C.14). Then
the canonical maps of smooth pairs:

(X,Z)
p0←− (DZX,A1Z)

p1−→ (NZX,Z)

induces an equivalence: ( X

X/Z

)
∼=
( NZX

NZX/Z

)
(C.15)

in H(S).
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The proof of proposition Theorem C.4.11 follows from Proposition C.4.12 with localization
and homotopy property.

The proposition Theorem C.4.11 gives us the explicit description of Σf as follows:

Σf = p#δ∗ ∼= p#δ∗(1X)⊗X (−) ∼= ThX(Nf)⊗X (−) (C.16)

where Nf is the tangent bundle of f.

C.4.4 Statement of six operations for SH⊗.
Theorem C.4.13. [Rob14, Theorem 9.4.8] There exists a functor

SH⊗ : Schopfd → CAlg(PrLstb) (C.17)

and for a morphism f : Y → X we have the following functors:

1. f∗ : SH⊗(X)→ SH⊗(Y).

2. f∗ : SH(Y)→ SH(X).

3. f! : SH(X)→ SH(Y) when f is separated and of finite type.

4. f! : SH(Y)→ SH(X) when f is separated of finite type.

5. −⊗− : SH(X)⊗ SH(X)→ SH(X).

6. HomSH(X)(−,−) : SH(X)× SH(X)→ SH(X).

Morever, the functor SH⊗ along with the functors (f∗, f∗, f!, f
!,−⊗−,Hom(−,−)) satisfy the

following properties:

1. (Monoidality) f∗ is monoidal,i.e. there exists an equivalence

f∗(E⊗ E ′) ∼= f∗(E)⊗ f∗(E ′) (C.18)

for E, E ′ ∈ SH⊗(X)

2. (Projection Formula) For E, E ′ ∈ SH(X) and B ∈ SH(Y), we have the following equiva-
lences:

(a)
f!(B⊗ f∗(E)) ∼= (f!B⊗ E) (C.19)

(b)
f! HomSH(X)(E, E

′) ∼= HomSH(Y)(f
∗E, f!E ′) (C.20)

3. (Base Change) If
X ′ Y ′

X Y

f ′

g ′ g

f

(C.21)

is a cartesian square of base schemes with g being separated of finite type, we have the
following equivalences:
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(a)
Ex(∆∗

! ) : f
′∗g ′

!
∼= g!f

∗ (C.22)

(b)
Ex(∆!

∗) : f
′
∗g

′! ∼= g!f∗ (C.23)

4. (Proper pushforward) If f is a separated morphism of finite type, then there exists a
natural transformation:

αf : f! → f∗ (C.24)

which is an equivalence if f is proper.

5. (Purity) For f to be smooth morphism separated of finite type, there exists a self equiv-
alence Twf and an equivalence

Twf ◦f! ∼= f∗

6. SH⊗ satisfies Nisnevich descent.
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APPENDIX D

THE CONSTRUCTION OF THE
ENHANCED OPERATION MAP

In this chapter, we review the construction of the enhanced operation map due to Liu and
Zheng. In the first section, we recall the∞-categorical statement of Deligne’s glueing ([LZ12,
Theorem 0.1]). We also give a brief review of the proof of the glueing and recall the notion of
simplicial set of compactifications and cartesianizations. In the second section, we recall the
theorem of partial adjoints ([LZ17, Proposition 1.4.4]). Using the theorems of glueing and
partial adjoints, we give a brief review of the construction of the enhanced operation map in
the last section as explained in [Rob14, Section 9.4.1.3].

D.1 Deligne’s compactification in ∞-categories.

D.1.1 Motivation.

The extraordinary pushforward is one of the six functors involved in the six operations of
étale cohomology of schemes and SH. For example, let f : X→ Y be a separated morphism of
finite type of quasi-compact and quasi-separated schemes and Λ be a torsion ring. We have
the extraordinary pushforward map

f! : D(X,Λ)→ D(Y,Λ)

which when restricted to open immersions is the map f# and to proper morphisms the map
f∗. The construction of f! involves the general theory of glueing two psuedofunctors developed
by Deligne. In this chapter, we briefly review the theory of glueing in higher categories due to
Liu and Zheng ([LZ12]). Before motivating the main theorem, let us briefly recall the classical
argument of glueing due to Deligne.

For any morphism f as above, we consider the (2, 1)-category of compactifications Schcmp
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whose objects are schemes and morphisms are triangles

Y

X Y

pj (D.1)

where j is open and p is proper. It is important to note that one can compose morphisms of
such form due to Nagata’s theorem of compactification. Then one can define a pseudo-functor
Fc : Schcmp → Cat1 which sends a scheme X to D(X,Λ) and a triangle of the form above to the
composition p∗ ◦ j# (here Cat1 denotes the 2-category of categories). The theory of glueing
in 2-categories tell us that the functor Fc can be extended to a functor f! from the category
Sch ′ consisting of schemes where morphisms are separated and finite type. In other words,
the diagram

Schcomp Cat1

Sch ′

Fc

f! (D.2)

commutes.

In the language of ∞-categories, we replace the category Schcomp by a simplicial set
δ∗2N(Sch ′)cartP,O . The n-simplices of δ∗2N(Sch ′)P,O are n× n grids of the form

X00 X01 · · · X0n

X10 X11 · · · X1n

...
...

...
...

Xn1 Xn2 · · · Xnn

(D.3)

where vertical arrows are open, horizontal arrows are proper and each square is a pullback
square. Also one has a natural morphism pSch ′ : δ∗2N(Sch ′)P,O → N(Sch ′) induced by compo-
sition along the diagonal. We can now state the result of glueing.

Theorem D.1.1. [LZ12, Corollary 0.3] The natural map

pSch ′ : δ∗2N(Sch ′)cartP,O → N(Sch ′)

is a categorical equivalence.

In particular, given any morphism g : δ∗2N(Sch ′)cartP,O → Ĉat∞, there exists a morphism
g̃ : N(Sch ′) → Ĉat∞ such that pSch ′ ◦ f̃ and f are homotopic (i.e. there exists a morphism
F : ∆1 × δ∗2N(Sch ′)P,O → Ĉat∞ such that F|[0] = pSch ′ ◦ g̃ and F|[1] = g). The above glueing
statement shall play an important role in constructing the enhanced six operation map. The
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enhanced six operation map shall encode f! and base change formula with respect to lower
shriek functors.
The above theorem is a special case of Theorem D.1.3. This uses the notion of multi-marked
and multi-tiled simplicial sets which we recall in Chapter 4.

D.1.2 Statement of the theorem.
At first, we recall the notion of admissible edges.

Definition D.1.2. Let C be an ordinary category. Let E be a collection of morphisms in C.
Then E is said to be admissible if

1. E contains every identity morphism in C.

2. E is stable under pullbacks.

3. For every pair of composable morphisms p ∈ E an q a morphism in C, then if p ◦ q ∈ E
implies q ∈ E.

Theorem D.1.3. Let C be a category admitting pullbacks. Let E0, E1, · · · , Ek where k ≥ 2 be
sets of morphisms each containing identity morphism and satisfy the following conditions:

1. E1, E2 ⊂ E0 and E1, E2 are admissible.

2. Every morphism f ∈ E0 can be factorised as f = p ◦ q where p ∈ E1 and q ∈ E2.

3. For every k ≥ 3, Ei is stable under pullbacks by E1.

Then the natural map

pc : δ
∗
kN(C)E1,··· ,Ek → δ∗k−1N(C)E0,E3,··· ,Ek

is a categorical equivalence.

An immediate corollary is the following which is the ∞-categorical statement of Deligne’s
glueing.

Corollary D.1.4. Let C = Sch’ be the category of quasi-compact and quasi-separated schemes
with morphisms separated of finite type. Let P be the collection of proper morphisms and O
be the collection of open immersions. Then the map

pC : δ∗2N(C)P,O → N(C)

is a categorical equivalence.

Remark D.1.5. 1. The corollary is proved by applying Theorem D.1.3 on k = 2 and
E0 = Ar(Sch’), E1 = P, E2 = O.

2. Unwinding the definition of categorical equivalence, the theorem is equivalent to prove
the following statement: Let D be an ∞-category. Then the functor:

Fun(δ∗k−1N(C)E0,E3,··· ,Ek ,D)→ Fun(δ∗kN(C)E1,E2,··· ,Ek ,D)

is an equivalence on the level of homotopy categories.
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3. For the sake of simplicity, we shall give an idea of the proof the statement for k = 2 and
E0 = Ar(C).

4. If D is the Duskin nerve of Cat1 (the category of small categories), we get Deligne’s
result on the level of homotopy categories.

Notation D.1.6. We denote the map pC in Theorem D.1.3 as the composition

δ∗2N(C)cart
E1,E2 δ∗2N(C)E1,E2 N(C)

pcart pcomm

The idea to prove the specified version of Theorem D.1.3 is by proving that pcart and pcomm
are categorical equivalences.

We shall use the following lemma to prove that a morphism of simplicial sets is a categorical
equivalence.
Lemma D.1.7. [LZ12, Lemma 1.9] A map of simplicial sets f : Y → Z is a categorical
equivalence iff for any ∞-category D, the following conditions hold:

1. For every l = 0, 1 and every commutative diagram

Y Fun(∆l,D)

Z Fun(∂∆l,D)

v

f p

w

(D.4)

where p is induced by ∂∆l ⊂ ∆l, there exists a map u : Z → Fun(∆l,D) such that
p ◦ u = w and u ◦ f, v are homotopic over Fun(∂∆l,D).

2. For l = 2 and for every commutative diagram in Eq. (D.4), there exists a map u : Z→
Fun(∆l,D) and p ◦ u = w.

Remark D.1.8. We give a brief idea on proving Corollary D.1.4. The key is to use Lemma D.1.7.
We give a sketch on proving each pcart and pcomm satisfy the condition of lemma for l = 0.

1. For l = 0, we need to show the existence of the following dotted arrow:

δ∗2N(C)P,O D

N(C)

v

pcomm

u (D.5)

On the level of objects, u is already defined as it is same as v. Let us give a brief sketch
on how one defines u on the level of morphisms. Let f : Y → X be a morphism of
schemes. Factorize f as Y f ′

−→ Y ′ g ′
−→ X where f ′ is open and g ′ is proper. The following

diagram:
Y Y

Y ′ Y ′ X

Y ′ X

f ′ f ′

g ′

g ′

(D.6)
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gives a morphism u12 : Λ
2
1 → δ∗2N(C)P,O. This induces a map v ◦ u12 : Λ21 → D. As D

is an ∞-category, this extends to a map v : ∆2 → D. We define u(f) := v|∆1(restricted
to edge opposite to 1). Thus modulo the choice of compactification, we can define u on
the level of morphisms.

2. For pcart, one can proceed in the following way. We need to prove the existence of
dotted arrow

δ∗2N(C)cartP,O D.

δ∗2N(C)P,O

v

pcart
u (D.7)

As before, u on the level of 0-simplicies is already defined via v. Let us sketch how one
can define u on the level of 1-simplices. Let σ

Y ′ X ′

Y X

f ′

g ′ g

f

(D.8)

be a 1 simplex of δ∗2N(C)P,O where f ′, f are proper and g ′, g are open. Then, we have a
diagram

Y ′

Y ×X X ′ X ′

Y X

h

f ′

g ′

f1

g1 g

f

(D.9)

where the bottom square is Cartesian. The morphism h is open and proper as f ′, f1 are
proper and g, g1 are open. Thus we also have a cartesian square:

Y ′ Y ′

Y ′ Y ×X X ′

id

id h

h ′

(D.10)

Combining these two cartesian squares, gives us a morphism

h ′ : Λ21 → δ∗2N(C)cartP,O

pcart
−−−→ D

As D is an ∞-category, this extends to h ′
1 : ∆2 → D. We define u(σ) = h ′

1|∆1 (edge
opposite to 1).
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D.1.3 Simplicial set of compactifications and cartesianizations.

In this subsection, we define two important simplicial sets: simplicial set of compactifications
and cartesianizations. The simplicial set of compactifications is an important tool for show-
ing that the pcom is a categorical equivalence. The simplicial set of cartesianizations is need
for showing that the pcart is a categorical equivalence. The definitions of both of these are
motivated from the ideas of proving the theorem.
We shall define specific simplicial sets which shall play a key role in defining these objects (see
[LZ12, Section 4] and [LZ12, Section 5] for more details).

Definition D.1.9. [LZ12, Notation 4.1] Let Kptn be the sub-bisimplicial set of the bisimpli-
cial set ∆n,n spanned by vertices (i, j) where 1 ≤ i ≤ j ≤ n.

Definition D.1.10. Let Cptn ⊂ [n] × [n] be the category spanned by objects (i, j), 1 ≤ i ≤
j ≤ n. Denote Cptn := N(Cptn).

Notation D.1.11. Denote �n := δ∗2 Kptn. Also for a partially ordered set P with ordering
≤ and two elements x, y ∈ P, we denote:

1. Px/ to be the undercategory of x.

2. P/x to be the overcategory of x.

3. Px//y to be the category spanned by objects z ∈ P where x ≤ z ≤ y. It is empty if x > y.

Remark D.1.12. Some remarks on the definitions above.

1. Diagram of Cpt1 is as follows:

a00 a01

a11

Thus Cpt1 ∼= ∆2. Here aij is the vertex (i, j) in [n]× [n].

2. We have a natural inclusion �n ⊂ Cptn.

3. The Hasse diagram of �1 is as follows:

�1 := a00 a01 ∪
a01

a11

Thus �1 ∼= Λ21.

4. The Hasse diagram of Cpt2 is as follows:
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a00 a01 a02

a11 a12

a22

Thus Cpt2 ∼= ∆4
∐
∆1 ∆4.

5. The Hasse diagram of �2 is as follows:

�2 ∼= a00 a01 a02 ∪
a01 a02

a11 a12

∪

a02

a12

a22

Proposition D.1.13. 1. �n ∼= ∪ni=0�ni where �ni := N(Cptn(0,i)//(i,n)).

2. The inclusion �n ⊂ Cptn is inner anodyne ([LZ12, Lemma 4.2]).

We now define the simplicial set of compactifications.

Definition D.1.14. [LZ12, Definition 4.3] Let C be an ordinary category and E1, E2 be set of
edges as in the condition of the Theorem D.1.3. Let τ : [n]→ C be a map. A compactification
of τ is a map

σ : Cptn → C

such that

1. σ carries ”vertical morphisms” (i, j)→ (i ′, j) to E1 and ”horizontal morphisms” (i, j)→
(i, j ′) to E2.

2. The composition :
[n]→ Cptn σ

−→ C

is the map τ. Here the map [n]→ Cptn is the map sending i→ (i, i).

Definition D.1.15. Let α = 1 or 2, given a functor [n] → C, we define the category of
compactifications of τ, denoted by Kptα(τ) as follows:

1. Objects are compactifications of τ.

2. Morphisms between σ and σ ′ are natural transformations of functors such that the
morphism σ(i, j)→ σ ′(i, j) is in Eα.

Definition D.1.16. (Simpler version of [LZ12, Definition 4.4]) Let C be a category with
collection of edges E1, E2 as conditions in the theorem.Let τ : [n]→ C be a map and α = 1 or 2.
We define the simplicial set of compactifications to be the∞-category Kptα(τ) := N(Kptα(τ)).
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Remark D.1.17. Some remarks on the simplicial set of compactifications are as follows:

1. A compactification σ : [n] → C is equivalent to a morphism of multi-marked simplicial
sets:

ϕ(σ) : δ∗2+Kptn → (N(C), E1, E2).

2. Given a compactification σ : [n]→ C, by the previous remark we get a map

σc : δ
∗
2+Kptn → (N(C), E1, E2)

Applying δ2+∗ , we have the following chain of maps:

Kptn → δ2+∗ δ
∗
2+Kptn σc−→ N(C)E1,E2 .

Applying δ∗2, we get the map:

φ(σ) : �n → δ∗2N(C)E1,E2 .

3. The above discussion induces a map of simplicial sets:

φ : Kptα(τ)→ Fun(�n, δ∗2N(C)E1,E2)

4. Let us give an explain the map φ(σ) in the case of Cpt1 and �1.
Let τ be the morphism tyx→ y in C. A compactification of τ is a factorization of t of
the form:

x
t1−→ x ′

t2−→ y

where t1 is in E1 and t2 is in E2 and t = t2 ◦ t1.
�1 is the union of two edges t1 and t2.

The map φ(σ) sends the edge t1 to a 1 simplex in δ∗2N(C)E , which is of the form:

x x

x ′ x ′

id

f t1

id

and t2 to the square

x ′ y

x ′ y.

t2

id id
t2

5. �1 ⊂ Cpt1 is inner anodyne as it is the inclusion Λ21 ⊂ ∆2.
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Thus, given any functor g : δ∗2N(C)E → D where D is an ∞-category and given any one
simplex ∆1 → N(C), one can choose an arbitrary compactification of it σ : Cpt1 → N(C).
This induces the map by the previous remark

φ(σ) : �1 → δ∗2N(C)E

Composing with g, we get a map: �1 → D. Being an inner anodyne, we get the
following dotted arrow

�1 D

Cpt1

g◦φ(σ)

By the inclusion ∆1 ↪→ Cpt1, we get the morphism ∆1 → D. Thus we associated to a
1-simplex of N(C), a 1-simplex of D upto a choice of compactification.

The following proposition says that the collection of compactifications in contractible.

Proposition D.1.18. [LZ12, Theorem 4.21] The ∞-category Kpt1(τ) is weakly contractible.

Remark D.1.19. The idea of the proof is to show that the underlying category is filtered.
Morever given any two compactifications σ, σ ′ : Cpt1 → C, we have a compactification σ ′′ :
Cpt1 → C with morphisms σ ′′ → σ and σ ′′ → σ ′.

These define the necessary tools for the compactification case. We now move to define
the combinatorial simplicial sets needed for proving that the map pcart is a categorical equiv-
alence. We at first define the notion of up-sets which shall lead us to the simplicial set of
carteisanizations, an analogue of Kptα(τ).

Definition D.1.20. [LZ12, Definition 5.9] Let P be a partially ordered set. Q ⊂ P is said to
be an up-set if for every q ∈ Q and p ≥ q in P implies p ∈ Q. We shall denote the category
of up-sets of P by U(P). It is a partially ordered set where the ordering is given by inverse
inclusion.

Notation D.1.21. For any partially ordered set, we denote the products (infima) by ∧ and
coproducts (suprema) by ∨. In U(P), we have Q∧Q ′ = Q ∪Q ′ and Q∨Q ′ = Q ∩Q ′.

There is a canonical order preserving map σP : P → U(P) defined by p→ Pp/.

There are special squares one considers in a partially ordered set, namely exact squares.

Definition D.1.22. A square in a partially ordered set is an exact square if it is both pushout
and a pullback square.

The

Lemma D.1.23. [LZ12, Lemma 5.18] Let C be an ∞-category and F : N(U(P)) → C be
a functor. Then if F is a right Kan extension along σP, it sends exact squares to pullback
squares.
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We move on to defining the main simplicial set Cartn which encodes the information of
how to construct cartesian squares out of commutative squares.

Definition D.1.24. Consider [n] × [n]. We shall denoted the partially ordered set of non-
empty up-sets of [n]× [n] by Cartn.
We denote σn := σ[n]×[n] : [n] → [n] → Cartn to be the usual map sending (p, q) → ([n] ×
[n])(p,q)/.
Let Cartn := N(Cartn) and σn : ∆n × ∆n → Cartn be the map induced from σn.

Remark D.1.25. Some remarks on Cartn are as follows:

1. The diagram of Cart1 is as follows:

b00

P b01

b10 b11

Here bij := ([1]× [1])(i,j)/ and P = b01 ∧ b10.

An n-simplex of δ∗2N(C)E is a map τ : ∆n × ∆n → N(C).

Definition D.1.26. Let τ : ∆n×∆n → N(C) be a map. We define the simplicial set Kart(τ)
which is defined as the pullback of the diagram:

Kart(τ)RKE

∆0 Fun(∆n × ∆n,N(C))τ

where Kart(τ)RKE is the sub-simplicial set of Fun(Cartn,N(C)) which are right Kan extensions
along σn.

Proposition D.1.27. [LZ12, Remark 5.22] If C admits pullbacks, the simplicial set Kart(τ)
is a contractible Kan complex.

We need to give a marked structure on the simplicial sets Cartn. For this, we need some
more notations and maps in the simplicial sets Cartn.

Notation D.1.28. [LZ12, Notation 5.23]

1. We have a map:
πn : Cartn → [n]× [n]

defined as:
πn(P) := (min(p,q)∈P p,min(p,q)∈P q).

2. πn ◦ σn = id[n]×[n].
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3. Other than σn, we have two maps:

ξn, ηn : [n]× [n]→ Cartn

defined by

ξn(p, q) := σn(p, 0)∧ σn(0, q);ηn(p, q) := σn(p, n)∧ σn(n, q).

4. For (p, q) ∈ [n]× [n], we denote

�n(p,q) := N(Cartnξn(p,q)//ηn(p,q))

5. Denote
�n := ∪(p,q)∈[n]×[n] �n(p,q) .

Remark D.1.29. Some remarks on the above notations:

1. The functors ξn and ηn satisfy the following property:

ξn(p, q) ≤ σn(p, q) ≤ ηn(p, q)

2. The definition of �n is analog to the definition of �n. In the case of �n, we have the
functors: p, q : [n]→ Cptn defined as p(i) = (0, i) and q(i) = (i, n). And p(i) ≤ (i, i) ≤
q(i). The functors p and q are analog to the functors σn, ηn which motivates defining
�n(p,q) and �n in the similar way one defined �ni and �n.

Definition D.1.30. [LZ12, Notation 5.25] Consider the bi-marked simplicial set (∆n ×
∆n,F ′

1 := (ϵ21∆
n,n)1,F ′

2 := (ϵ22∆
n,n)1). Let (Cartn,F) be the marked-simplicial set

(Cartn,F1 := (πn)−1(F ′
1),F2 := (πn)−1(F ′

2)).
We define (Cartn,Fcart) to the 2-tiled simplicial set where the 2-tiling is given by F12 :=
F1 ?cart F2.

Remark D.1.31. 1. We have a natural inclusion of simplicial sets:

ic : δ
∗
2δ
2�
∗ (Cartn,Fcart) ↪→ δ∗2δ

2
∗(Cartn,F).

This is because the m-simplices of δ∗2δ2�∗ (Cartn,Fcart) are maps ∆m×∆m → Cartn such
that for every map:

∆1 × ∆1 → ∆m × ∆m → Cartn

is in F12.

2. We have maps
ψ : Kart(τ)→ Fun(δ∗2δ2∗(Cartn,F), δ∗2N(C)E)

and
ψc : Kart(τ)→ Fun(δ∗2δ2�∗ (Cartn,Fcart, δ∗2N(C)cart

E ).

These maps are induced from an extension of the map τ to a map h : Cartn → N(C).
The map h of multi-marked simplicial sets and multi-tiled simplicial sets

(Cartn,F)→ (N(C), E)
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and
(Cartn,Fcart)→ (N(C), E , E12).

The maps ψ and ψc are constructed by applying functors δ∗2, δ2∗ and δ2�∗ on the above
two maps.

3. It is not clear that the inclusion map ic is an inner anodyne unlike the inclusion of
�n ⊂ Cptn. Thus, we need to have a map of simplicial sets iXY : X → Y which is a
cofibration and there exists a commutative square of the form

X δ∗2δ
2�
∗ (Cartn,Fcart)

Y δ∗2δ
2
∗(Cartn,F).

qXc

iXY

qY

We have the following lemma:

Lemma D.1.32. [LZ12, Lemma 5.35] There exists simplicial sets Bn i
−→ An such that:

1. An = (∆n × ∆n)# × (Cartn)♭.

2. Bn =
⋃
x≤yN(Ix,y)

# × (Cartnx//y)♭
i
−→ An. Here Ix,y ⊂ [n]× [n] consisting of pairs (x, y)

such that ξn(p, q) ≤ x ≤ y ≤ ηn(p, q).

3. i is a cofibration and there is a commutative diagram

Bn δ∗2δ
2�
∗ (Cartn,Fcart)

An δ∗2δ
2
∗(Cartn,F).

βn

i

αn

D.1.4 Proving pcomm is a categorical equivalence.
We try to explain the key idea of the proving that pcomm is a categorical equivalence. A part
of the proof uses the idea of category of simplices over a simplicial set. This is discussed in
detail in [LZ12, Section 2].

Let Y = δ∗2N(C)P,O and Z = N(C). We apply Lemma D.1.7 in our setting. Consider the
commutative diagram

Y Fun(∆l,D)

Z Fun(∂∆l,D)

v

pcomm p

u

(D.11)

where l = 0, 1, 2. We need to construct a map u : Z→ Fun(∆l,D). Let τ : ∆n → Z. We need
to define u(τ) : ∆n → Fun(∆l,D).
We have the following commutative diagram:
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N(τ) Fun(Cptn×∆l,D) Fun(∆n × ∆l,D)

Kptα(τ) Fun(H,D) Fun(∂∆l × Cptn,D) Fun(∂∆l × ∆n,D)

h ′

j ′ j

res2

id×p

h res1

(D.12)
where:

1. res2, res1 is induced by inclusion ∆n ⊂ Cptn.

2. H = ∆l ×�n
∐
∂∆l×�n ∂∆l × Cptn and j is induced by the inclusion H ↪→ ∆l × Cptn.

3. h : Kptα(τ)→ H be the map induced by φ(τ), v and w.

4. N(τ) is the simplicial set such that the leftmost square is pullback.

We have the following statements:

1. j is trivial Kan fibration. This follows from [Lur09, Corollary 2.3.2.5] applied to the
inner anodyne i : �n ⊂ Cptn and the inner fibration D → ∆0.

2. This implies that j ′ is a trivial Kan fibration.

3. As Kptα(τ) is weakly contractible and j ′ is a weak homotopy equivalence implies N(τ)
is weakly contractible.

Let us denote the composition res2 ◦h ′ by ϕn. The rest of the argument uses the notion of
category of simplices. Indeed the collection ϕn induces a natural transformation

ϕ : N→ Map[Z,Fun(∆l,D)]

between functors over category of simplices over Z (see [LZ12, Notation 2.6] for further
details). The above commutative diagram also implies that morphism ϕ when mapped
to Map[Z,Fun(∂∆l,D)] is constant i.e. the image of ϕ in Map[Z,Fun(∂∆l,D)] is a map
u : Z→ Fun(∂∆l,D).
As the morphism Map[Z,Fun(∆l,D)] → Map[Z,Fun(∂∆l,D)] is an injective fibration with
respect to the injective model structure on Fun(∆/Z,Set∆) (see [LZ12, Proposition 2.8] for
more details), it satisfies right lifting property with respect to anodyne maps. As N(σ) is
weakly contractible, then inclusion N ↪→ N▹ is an anodyne map. Thus the map ϕ admits an
extension

ϕ ′ : N▹ → Map[Z,Fun(∆l,D)].

Evaluating ϕ ′ at the cone point gives us a morphism w : Z→ Fun(∆l,D) such that p ◦w = u
and w ◦ pcomm ,v are homotopic relative to Fun(∂∆l,D).
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D.2 Partial adjoints.
Theorem D.2.1. Consider quadruples (I, J, R, f) where J ⊂ I are finite sets, R an I-simplicial
set and f : δ∗IR→ Cat∞ a functor satisfying the following conditions:

1. For every j ∈ J and for every edge e ∈ ϵIj(R), f(e) has a right adjoint.

2. For every i ∈ Jc := I/J and j ∈ J, every square τ ∈ (ϵIi,jR)1,1 is right adjointable.

Then, there exists a functor fJ : δ∗I,JR→ Cat∞ satisfying the following conditions:

1. f and fJ are the same functors on the sub-simplicial set δ∗Jc(∆ic)∗R ⊂ δ∗IR, δ
∗
I,JR. Here

ic : J
c ⊂ I.

2. For every j ∈ J and for every edge e ∈ ϵIj(R), fJ(e) is a right adjoint to f(e).

3. For every i ∈ Jc, j ∈ J any every square τ ∈ (ϵIi,jR)1,1, fJ(τ) is right adjoint to f(τ).

Remark D.2.2. The theorem of partial adjoints help us to encode the notion of smooth
and proper base change in the setting of six operations. Let R ′ be the bi marked simplicial
set (N(Sch),ALL, open) where the collection ALL considers all morphisms and the collection
open considers only open immersions. Let

R := δ2∗R
′

and let f be the functor
f : δ∗2R→ Cat∞

which on the level of zero simplices takes X→ D⊗(X) and for a morphism h : X→ Y sends it
to the pullback h∗( here we follow the notation defined in Notation 4.3.1). Then the theorem
along with the conditions of Notation 4.3.1 allows us to define a new map

f ′ : δ∗2,{2}R→ Cat∞
which now sends an open immersion h : X→ Y to h#.
A similar statement holds for proper maps.

D.3 Construction of the enhanced operation map.
We review the construction of the enhanced operation map associated to a functor D which
satisfies the conditions of Notation 4.3.1. This is explained in [Rob14, Section 9.4.13].

Let Fun(∆1,Schfd) be the functor category of base schemes. Let

Y0 Y1

X0 X1

u

f0 f1

v

(D.13)

be an edge in Fun(∆1,Schfd). We denote the following:
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1. F := all such squares such that u and v are separated morphisms of finite type.

2. P := all such squares such that u and v are proper.

3. O := all such squares such that u and v are open.

4. ALL := all such squares such that u and v can be any morphism of schemes.

Consider the following composition:

δ∗
3,{1,2,3}

((Fun(∆1,Schfd))P,O,ALL)
cart

δ∗
2,{1,2}

((Fun(∆1,Schfd))F,ALL ′)cart

δ∗
1,{1}

(Fun(∆1,Schfd)) = Fun(∆1,Schfd)op

Mod(PrLstb).

(D.14)

Using the definition of module objects in terms of the operad Pf⊗, the above composition can
be formulated as a morphism

D1,2,3 : δ∗4,{1,2,3}(((Fun(∆1,Schfd))P,O,ALL)
cart � Pf×)→ Ĉat∞.

Here −�− denotes the exterior product of multisimplicial sets ([LZ12, Definition 3.7]).
We shall use the theorem of partial adjoints Theorem D.2.1 repeatedly to construct the en-
hanced operation map. It is constructed in the following steps.

1. We use Theorem D.2.1 on the functor D1,2,3 and on the simplicial set R = op4
{1,2,3}

(Schfd)cart
P,O,ALL

and J = {1} ⊂ I = {1, 2, 3, 4}. The theorem can be applied because of the following:

(a) Condition (1) of Theorem D.2.1 exists because of existence of f∗.
(b) Condition (2) of Theorem D.2.1 exists because of 2(a) and 2(b) of Notation 4.3.1.

This yields us the functor

D2,3 : δ∗4,{2,3}((Schfd)cart
P,O,ALL � Pf⊗)→ Ĉat∞. (D.15)

2. We apply the dual version of Theorem D.2.1 to D2,3 where
R = op3

{2,3}
((Schfd)cart

P,O,ALL � Pf⊗) and J = {2} ⊂ I = {1, 2, 3}. The conditions of the
theorem are satisfied because:

(a) Condition 1 of Theorem D.2.1 exists because of the existence of f#.
(b) Condition 2 of Theorem D.2.1 exists because of 3 and 1(a), (b) of Notation 4.3.1.
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This yields us the functor:

D3 : δ∗4,{3}((Schfd)cart
P,O,ALL � Pf⊗)→ CAlg(PrLstb) (D.16)

The map D3 now can be formulated as a morphism

D3 : δ∗3,{3}(Schfd)cart
P,O,ALL → Mod(PrLstb).

3. Now we use the compactification theorem (Theorem D.1.3) on D3. This can be applied
as we have the compactification for separated and finite type morphisms. The categorical
equivalence yields a functor

EO(D⊗) : δ∗2,{2} Fun(∆1,Schfd)cart
F,ALL → Mod(PrLstb) (D.17)

We call the map EO(D⊗) as the enhanced operation map.
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