Lecture 7: Generalized Chern Character.

Luca Dall'Ava.

4th December 2019.

Contents

1	Connections.	1
2	Levi-Civita Connection.	2
3	Chern character for K_0	2
	From classical to cyclic homology case for K_0 . 4.1 The map for H_{2n}^{λ}	3
5	Dennis trace map.	4

1 Connections.

Assume $\mathbb{Q} \hookrightarrow K$, *A* commutative unital algebra (*K*-alg).

Definition 1.0.1. A **connection** on a A-module M is a collection of k-linear maps :

$$\nabla: M \otimes_A \Omega^n_{A/k} \to M \otimes_A \Omega^{n+1}_{A/k}$$

such that

$$\nabla(x.\omega) = (\nabla x).\omega + (-1)^n x \otimes d\omega$$

for $\omega \in \Omega^n_{A/k}$

Example 1.0.1. For example. $\nabla: M = M \otimes \Omega^0 \to M \otimes \Omega^1 \xrightarrow{\nabla} M \otimes \Omega^2$ such that $\nabla(m.a) = \nabla(m).a$.

Proposition 1.0.1. $\nabla^2 = \nabla \circ \nabla$ is Ω^n -linear. $R := \nabla^2|_M(n=0)$ is called the **curvature** of ∇ . It is A-linear and $\nabla^2(m \otimes \omega) = R(m) \otimes \omega$.

Example 1.0.2. If M is a A-free $R \in \operatorname{End}_A(M) \otimes \Omega^2_{A/K}$. If M is f.g and $R \leftrightarrow M_r(\Omega^2)$.

Note: If *M* is f.g and proj over *A*. Then $R \in \operatorname{End}_A(M) \otimes \Omega^1_{A/K}$. Morever:

$$[\nabla, -] : \operatorname{End}_A(M) \to \operatorname{End}_A(M) \otimes \Omega^1$$

such that $[\nabla, \alpha] = \nabla \circ \alpha - \alpha \circ \nabla$ is a connection.

Lemma 1.0.1. $[\nabla, R] = 0$.

Lemma 1.0.2. *M f.g and proj over A* \Longrightarrow

$$\operatorname{End}_{A}(M) \otimes \Omega^{n} \xrightarrow{Q} \operatorname{End}_{A}(M) \otimes \Omega^{n+1}$$

$$\downarrow^{s} \qquad \qquad \downarrow^{s}$$

$$\Omega^{n} \xrightarrow{d} \Omega^{n+1}$$

where $Q = [\nabla, R]$ and $s = \text{tr} \otimes \text{id}$. commutes.

Proposition 1.0.2. The homogeneous component of degree 2n of $\operatorname{tr}(\exp(R)) =: \operatorname{ch}(M, \nabla)$ is a cycle in $\Omega^{2n}_{A/K}$. Here

$$\exp(R) = 1 + R + R^2/2! + \cdots$$

We also see that

$$[\nabla, \exp(R)] = 0$$

Theorem 1.0.1. $[\operatorname{ch}(M,\nabla)]_{dR}$ is independent of ∇ and defined $\operatorname{ach}(M) \in \prod H_{dR}^{2n}(A)$.

2 Levi-Civita Connection.

We have a bijection:

M f.g proj of dim l /iso $\leftrightarrow e \in M_n(A)$ idempotent/conj by GL_l

One direction is given by $\operatorname{Im} e \leftarrow e$.

The definition of Levi-Civita connection given as follows. Let $M'\oplus m=A^l$. :

$$\nabla_e: M \otimes \Omega^n \to A^l \otimes \Omega^n_A \to A^l \otimes \Omega^{n+1}_A \to M \otimes \Omega^{n+1}_A$$

where the last map is given by $e \otimes id$.

Example 2.0.1. $e \in M_l(A)$ idempotent. Then

$$\operatorname{ch}(\operatorname{Im}(e), \nabla_e) = \frac{1}{l_1} [\operatorname{tr}(e.de.de.de \cdots de)] \in \Omega^{2l}_{A/k}$$

3 Chern character for K_0

Theorem 3.0.1.

$$\operatorname{ch}_0: (K_0(A), \oplus, \otimes) \to (H_{dR}^{ev}(A), \oplus, \otimes)$$

defined as

$$[M] \rightarrow \operatorname{ch}(M)$$

is the Chern class of $K_0(A)$ and defines a ring homomorphism.

Example 3.0.1. 1. K_0 of vector bundles. X a topological paracompact space. We can define

$$K^0(X) = \{\text{classes of vector bundles}\}/\sim$$

where

$$\sim : [E] + [E'] = [E \oplus E'].$$

Then $(K^0(X), + = \oplus)$ is called the Grothendieck group of vector bundles over X. We have the following theorem:

Theorem 3.0.2 (Serre-Swan). $K^0(X) \cong K_0(\mathcal{C}_{\mathbb{C}}(X))$ given by $[E] \to [\Gamma(E,X)]$.

2. Chern classes for smooth varieties. $K=\mathbb{C}.\ X/\mathbb{C}$ smooth complex manifold. In this case, we have :

$$\operatorname{ch}_0: K^0(X) \to H^*(X, \mathbb{C}).$$

4 From classical to cyclic homology case for K_0 .

We shall replace H_{dR} by H_{2n}^{λ} which is a quotient of $A^{\otimes (n+1)}/(1-t)$ where t is the cyclic operator. Eventually we shall arrive at

$$HC_{2n}^- \xrightarrow{nat} HC_{2n}^{per} \xrightarrow{nat} HC_{2n}$$
.

4.1 The map for H_{2n}^{λ} .

Assume: K commutative ring. 2 is regular/non-zero divisor in K. Let $e \in M_r(A) := R$. Then $e^{\otimes (n+1)}$ maps to 0 when n is odd and $e^{\otimes n}$ when n is even.

Thus

$$e^{\otimes (n+1)} = \begin{cases} 0 & n \text{ odd} \\ \text{a cycle in } C_n^{\lambda}(R) \end{cases}$$

when considered as an element in $H_{2n}^{\lambda}(A)$.

Theorem 4.1.1. The map

$$\operatorname{ch}_{0,n}^{\lambda}: K_0(A) \to H_{2n}^{\lambda}(A)$$

given by $[e] \to \operatorname{tr}((-1)^n.e^{\otimes 2n+1})$. is well defined and functorial.

Sketch. The map is defined as:

$$K_0(A) \to H_{2n}^{\lambda}(M(A)) \xrightarrow{\operatorname{tr}} H_{2n}^{\lambda}(A).$$

It is well defined by showing that there if [e] = [e'], then it maps to same element. This is shown by showing representatives of such classes in same space of matrices.

Claim: Upto some normalization , there exists a lift of $ch_{0,n}^0$ to $HC_{2n}(A)$.

Lemma 4.1.1. $\forall e \in M_r(A)$ idempotent, let

1.
$$y_i = (-1)^i \frac{(2i)!}{i!} e^{\otimes (2i+1)} \in M(A)^{2i+1}$$
.

2.
$$z_i := (-1)^{i-1} \frac{(2i)!}{2(i!)} (e^{\otimes (2i)}) \in M(A)^{\otimes (2i)}$$
.

Denote

$$c(e) := (y_n, z_n, y_{n-1}, z_{n-1}, \dots, y_1)$$

Then $c(e) \in M(A)^{\otimes (2n+1)} \oplus \cdots \oplus M(A)$ is a 2n-cycle in Tot(CC(M(A))).

Theorem 4.1.2. A unital K-algebra. Then $\operatorname{ch}_{0,n}: K_0(A) \to \operatorname{HC}_{2n}(A)$. Then

$$\operatorname{ch}_{0,n}([e]) := \operatorname{tr}(c(e))$$

is well defined and functorial in A.

Morever $S \circ \operatorname{ch}_{0,n}([e]) = \operatorname{ch}_{0,n-1}([e])$ where S is the periodicity operator.

Corollary 4.1.1. The chern map $\operatorname{ch}_n^{\lambda}$ and $\operatorname{ch}_{0,n}$ are related in the following way.

$$p_* \operatorname{ch}_{0,n} = (-1)^n \frac{(2n)!}{n!} \operatorname{ch}_{0,n}^{\lambda}.$$

Example 4.1.1. 1. $\operatorname{ch}_{0,0}: K_0(A) \to \operatorname{HC}_0(A) = A/[A,A]$ is simply induced by the trace of the idempotent map.

2. $A=S_{\mathbb{C}}^2=\mathbb{C}[x,y,z]/(x^2+y^2+z^2-1)$. It is a classical fact : $K_0(A)=\mathbb{Z}\oplus\mathbb{Z}$ which is generated by $e:=1+p/2\oplus\mathbb{Z}$. Morever, we get that :

$$ch_{0,2}([e]) = tr(1/8pdpdp) = -i/2(xdydz + ydzdx + zdxdy)$$

which is the volume form. More generally, $\mathrm{ch}_{0,n}:S^2_{\mathbb{C}}\to H^{ev}_{dR}$ detects the fundamental generator of K_0 .

Proposition 4.1.1. There is a well defined functorial chern character map

$$ch_0^: K_0(A) \to HC_0^-(A) = HC_0^{per}(A)$$

given by $ch_0^-([e]) = c([e])$ such that the following composition ch_0 where the composition is:

$$K_0(A) \xrightarrow{\operatorname{ch}_0^-} \operatorname{HC}_0^-(A) \to \varinjlim \operatorname{HC}_{2n}(A) \to \cdots \to \operatorname{HC}_0(A)$$

Theorem 4.1.3. For any k-alg A, then the composition

$$K_0(A) \to \mathrm{HC}^{per}_0(A) \to H^{ev}_{dR}(A)$$

is upto constant the classical chern character.

Proof. Using the above proposition, the map is the Chern character corresponding to the Levi-civita connection.

5 Dennis trace map.

Goal $\operatorname{ch}_{n,i}: H_n(\operatorname{GL}(A)) \to \operatorname{HC}_{n+2i}(A)$ for all $n \ge 1, i \ge 0$.

Proposition 5.0.1 (Dennis trace map.). \exists *a natural maps*

1.

$$\operatorname{Dt}_n: H_n(\operatorname{GL}_r(A), k) \to \operatorname{HH}_n(A)$$

which is "nice".

2. $\operatorname{ch}_n^-: H_n(\operatorname{GL}_r(A), k) \to \operatorname{HC}_n^-(A)$ such that :

$$HC_{n}^{-}(A)$$

$$\downarrow h$$

$$H_{n}(GL_{n}(A),k) \xrightarrow{Dt_{n}} HH_{n}(A)$$

commutes.