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@ Work of M.R Douglas on ll-stability of D-Branes which is an important concept
in String Theory.
o Bridgeland gets the motivation from there and he gave a rigorous mathematical

treatment in his paper Stability condition on triangulated categories in the year
2007.

@ Arcara, Betram, Toda and many others describe the moduli space of Bridgeland
stable objects over a K3 surface.

@ In 2008, Kontsevich and Soibelman introduced the concept of support property
of a stability condition in the paper Stabilty structures, motivic
Donaldson-Thomas invariants and cluster transformations.

@ Highly influential due to their connections to

o physics,
@ mirror symmetry, representation theory,
o algebraic geometry, especially in the birational geometry of moduli spaces.
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by distinguished triangles and we have the notion of exact functors. The main
example of our interest is the following.

Let X be a smooth projective variety over C. We consider the bounded derived
category of coherent sheaves D?(X) = D(X) on X. It is infact a triangulated
category.

Note: Coh(X) is an abelian subcategory of D(X). Are there any other abelian
subcategories of D(X)? Yes, they can be constructed by t-structures.
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Let D be a triangulated category. Two full subcategories (D=9, D=0) are called a t-
structure on D if the following conditions are satisfied.

@ D! c D=0 and D2! Cc D=0 .

@ Homp(X,Y) =0 forall X € D0 Y ¢ D21,

© For any object X in D, there exists a distinguished triangle
XO - X = X1 = Xo[l]

where Xg € D=0, X; € D=1,

We use the notation D" := D=0[—n] and D2" := D2%[—n]. D=0N D20 is called
the heart of a t-structure.

Definition

A t-structure (DSO,DZO) on D is said to be bounded if for every object E € D, we
have E € D<"ND2"" for n >> 0.
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In D = DP(X), we have the following t-structure defined as follows:
@ D=0 = {E®* € D(X)|H/(E®) =0 Vi > 0}.
@ D20 = {E® € D(X)|H/(E®) =0 Vi< 0}.

Note : Here the heart is Coh(X) which is an abelian category.

It turns out the heart of any t-structure is an abelian category !!

Think of the heart of t-structure as building block of the whole triangulated category
by shifts.

The main example of our interest for the next section will be the case when X is a
curve.

Before moving into the stability condition, let us recall the definition of Grothendieck
groups and Numerical Grothendieck groups.
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Let X be a smooth projective variety over C as before. Define the Grothendieck
group of X denoted by K(X) as the free abelian group generated by elements of
Db(X) modulo the relations [E®] = [F®] 4 [G*®] for any distinguished triangle

E®* — F* — G* — E°[1].

It can be shown that (X) = K(Coh(X)) = K(A) where A is the heart of a
bounded t-structure of Db(A).
We have the Euler-Poincare pairing defined as

x: K(X)x K(X)—=Z

as
n

X(E®,F*) = (~1) dimc(Hom(E*®, F*[i])).
i=1
The Numerical Grothendieck group N(X) is defined as K(X)/K(X)+ where the L
is respect to x. For X a curve, we have N'(X) =Z @ Z.
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Let A be an abelian category. K(.A) be its Grothendieck group. At first, we define
what is a stability function. .

Definition

A stability function on an abelian category A is a group homomorphism
Z : K(A) — C such that for all 0 # E € A,

Z(E) liesin HUR<q.

A

Definition

The phase of an object E € A with respect to a stability function Z is defined by
o(E) = L arg(Z(E)).

An object 0 # E € A is said to be (semi)stable if VA C E subobjects, we have
P(A)(L)H(E).

.
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Let X be a smooth projective curve. We consider the standard t-structure on D(X).
We define the function Z on K(Coh(X)) as

Z(E) = —deg(E) + i rk(E)

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of
points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies Z(E) € R<o.

So Z is a stability function on Coh(X).
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Let X be a smooth projective curve. We consider the standard t-structure on D(X).
We define the function Z on K(Coh(X)) as

Z(E) = —deg(E) + i rk(E)

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of
points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies Z(E) € R<o.

So Z is a stability function on Coh(X).

If AC E, then ¢(A) < ¢(E) is equivalent of saying u(A) < u(E) where p(E) is the
p-stability. Here p stability of a torsion free sheaf E is defined as

(E) = deg(E)/ rk(E).

It turns out that semistable objects of Z are the semistable sheaves.
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A stability condition (Z,P) on a triangulated category D consists of a group
homomorphism Z : K(D) — C called the central charge and full additive
subcategories P(¢) for each ¢ € R satisfying the following axioms:

@ if E € P(4), then Z(E) = m(E)e'™® for some m(E) € R > 0.

Q P(¢+1)=P(¢)[1] for all ¢ € R.
O if ¢1 > ¢2 and A; € P(¢;), then Homp (A1, A2) = 0.
© for any E € D, there exists a finite sequence of real numbers

¢1> 2> > b

and a collection of triangles

0= —— E Enoy ————— > E,=E

~, 7 N, 7

such that A; € P(¢;) for all j.
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To give a stability condition on a triangulated category is equivalent to give a
bounded t-structure and a stability function on its heart with the Harder-Narasimhan
property (any object has a finite filtration of semistable objects ).

A

The pair (Z,Coh X) is a stability condition on X. We have already seen it is a
stability function. As the semistable objects are semistable sheaves, we have the
Harder-Narasimhan property.

.
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Important Facts:

@ If X is a smooth projective curve of genus > 1,the space of stability conditions
Stab(D(X)) = GIJ (R).

@ If dim X > 2, there is no numerical stability condition (stability functions
factoring via the numerical Grothendieck Group N'(X) — C) with heart Coh(X).
Thus it is not at all obvious that Stab(D) is non-empty for any triangulated
category D.

Thus for higher dimensional cases, we need to devise other ways to construct
t-structures. This shall be explained later. Before that, let us study about Stab(D).
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Chowdhur D will be a triangulated category with a surjective group homomorphism
v:K(D)—= A

where A = Z™ for some m € N.

Also we have assumed that the stability condition Z : K(D) — C factors through A
via v.

Now we define the support property.

Definition

Let Q : Ag := A ®z R — R be a quadratic form. We say that a stability condition
(Z,P) satisfies the support property with respect to Q if:

@ ker Z C Ag is negative definite with respect to Q.
@ For all semistable objects E, we have Q(v(E)) > 0.

The space of stability conditions ( assumed to be non-empty ) with support property
Staba (D) is a complex manifold of dimension m (m = dimgzA).

Thus, for curves it is a complex manifold of dimesion 2 as A/(X) is of dimension 2.
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The support property is mainly needed to show the fact that locally the inverse
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@ Firstly, we define topologies on the following collections:
@ the ring Hom(A, C).
@ the space of stability conditions Staby (D).

@ The main goal is to show that the natural map :
% : Stabp (D) — Hom(A, C)
given by
ZZzZ,P)=2Z
is a local homeomorphism.

© We prove the theorem by the concept of Harder-Narasimhan polygons under the
following assumption.
The quadratic form Q is non-degenerate and has signature (2,rk A — 2).

@ The fact that 2 is locally injective follows from the definition of the topologies.

The support property is mainly needed to show the fact that locally the inverse
map exists and is continuous.

© Finally, we show that we can reduce to the case where the assumption can be
made.
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Definition

Let (7, F) be a pair of full subcategories in an abelian category .A. This is said to be
a torsion pair in A if the following conditions are satisfied.

@ Hom(T,F)=0forall T €T and F € F.

@ For all X € A, there exists a short exact sequence

0—t(X) = X —= X/t(X)—>0

where t(X) € T and X/t(X) € F.

Recall that any torsion-free sheaf E has a Harder Narasimhan filtration
0O=E CEC..Eh=E

where we define u; = pge(E;/Ei—1) (here F is an ample divisor needed for definition of
stability). Also, we have

BFE—max(E) = pi1 > p2 > +++ > pn(E) = pF—min(E)-
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So we have a new heart. Now we need to construct a stability function.
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For a sheaf E € Coh(X), we define:
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Now for extending it to A

Zp,F)(E®) = Zip,r)(H*(E®)) — Zp,r)(HH(E®)).
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That's all folks!!



