Bridgeland Stability Conditions For Curves and Surfaces.

Chirantan Chowdhury.

University of Duisburg-Essen

SFB Meeting, February 2, 2019.

Motivation and development.

Bridgeland

Chiranta Chowdhu Work of M.R Douglas on Π-stability of D-Branes which is an important concept in String Theory.

- Work of M.R Douglas on Π-stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.

- ullet Work of M.R Douglas on Π -stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.
- Arcara, Betram, Toda and many others describe the moduli space of Bridgeland stable objects over a K3 surface.

- ullet Work of M.R Douglas on Π -stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.
- Arcara, Betram, Toda and many others describe the moduli space of Bridgeland stable objects over a K3 surface.
- In 2008, Kontsevich and Soibelman introduced the concept of support property of a stability condition in the paper Stabilty structures, motivic Donaldson-Thomas invariants and cluster transformations.

- Work of M.R Douglas on Π-stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.
- Arcara, Betram, Toda and many others describe the moduli space of Bridgeland stable objects over a K3 surface.
- In 2008, Kontsevich and Soibelman introduced the concept of support property of a stability condition in the paper Stabilty structures, motivic Donaldson-Thomas invariants and cluster transformations.
- Highly influential due to their connections to

- Work of M.R Douglas on Π-stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.
- Arcara, Betram, Toda and many others describe the moduli space of Bridgeland stable objects over a K3 surface.
- In 2008, Kontsevich and Soibelman introduced the concept of support property of a stability condition in the paper Stabilty structures, motivic Donaldson-Thomas invariants and cluster transformations.
- Highly influential due to their connections to
 - physics,

- Work of M.R Douglas on Π-stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.
- Arcara, Betram, Toda and many others describe the moduli space of Bridgeland stable objects over a K3 surface.
- In 2008, Kontsevich and Soibelman introduced the concept of support property of a stability condition in the paper Stabilty structures, motivic Donaldson-Thomas invariants and cluster transformations.
- Highly influential due to their connections to
 - physics,
 - · mirror symmetry, representation theory,

- Work of M.R Douglas on Π-stability of D-Branes which is an important concept in String Theory.
- Bridgeland gets the motivation from there and he gave a rigorous mathematical treatment in his paper Stability condition on triangulated categories in the year 2007.
- Arcara, Betram, Toda and many others describe the moduli space of Bridgeland stable objects over a K3 surface.
- In 2008, Kontsevich and Soibelman introduced the concept of support property of a stability condition in the paper Stabilty structures, motivic Donaldson-Thomas invariants and cluster transformations.
- Highly influential due to their connections to
 - physics,
 - · mirror symmetry, representation theory,
 - algebraic geometry, especially in the birational geometry of moduli spaces.

Bridgeland

Chirantai Chowdhui

Bridgeland

Chiranta Chowdhu

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors.

Bridgeland

Chiranta Chowdhu

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Bridgeland

Chiranta Chowdhu

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Let X be a smooth projective variety over \mathbb{C} .

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Let X be a smooth projective variety over \mathbb{C} . We consider the bounded derived category of coherent sheaves $\mathcal{D}^b(X) = \mathcal{D}(X)$ on X.

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Let X be a smooth projective variety over \mathbb{C} . We consider the bounded derived category of coherent sheaves $\mathcal{D}^b(X)=\mathcal{D}(X)$ on X. It is infact a triangulated category.

Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Let X be a smooth projective variety over \mathbb{C} . We consider the bounded derived category of coherent sheaves $\mathcal{D}^b(X)=\mathcal{D}(X)$ on X. It is infact a triangulated category.

Note: Coh(X) is an abelian subcategory of $\mathcal{D}(X)$.

Bridgeland

Chiranta Chowdhu

> Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Let X be a smooth projective variety over \mathbb{C} . We consider the bounded derived category of coherent sheaves $\mathcal{D}^b(X)=\mathcal{D}(X)$ on X. It is infact a triangulated category.

Note: Coh(X) is an abelian subcategory of $\mathcal{D}(X)$. Are there any other abelian subcategories of $\mathcal{D}(X)$?

Bridgeland

Chiranta Chowdhu

> Triangulated categories are like abelian categories where exact sequences are replaced by distinguished triangles and we have the notion of exact functors. The main example of our interest is the following.

Example

Let X be a smooth projective variety over \mathbb{C} . We consider the bounded derived category of coherent sheaves $\mathcal{D}^b(X)=\mathcal{D}(X)$ on X. It is infact a triangulated category.

Note: $\operatorname{Coh}(X)$ is an abelian subcategory of $\mathcal{D}(X)$. Are there any other abelian subcategories of $\mathcal{D}(X)$? Yes, they can be constructed by t-structures.

Bridgeland

Chirantai Chowdhui

Let $\ensuremath{\mathcal{D}}$ be a triangulated category.

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0},\mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0},\mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

$$\ \, \mathbf{0} \ \, \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \, \text{and} \ \, \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ \, .$$

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0}, \mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

- $\bullet \ \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \text{and} \ \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ .$

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0}, \mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

- $\ \, \mathbf{0} \ \, \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \, \text{and} \ \, \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ \, .$
- **3** For any object X in \mathcal{D} , there exists a distinguished triangle

$$X_0 \to X \to X_1 \to X_0[1]$$

where $X_0 \in \mathcal{D}^{\leq 0}, X_1 \in \mathcal{D}^{\geq 1}$.

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0},\mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

- $\bullet \ \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \text{and} \ \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ .$
- **3** For any object X in \mathcal{D} , there exists a distinguished triangle

$$X_0 \rightarrow X \rightarrow X_1 \rightarrow X_0[1]$$

where $X_0 \in \mathcal{D}^{\leq 0}, X_1 \in \mathcal{D}^{\geq 1}$.

We use the notation $\mathcal{D}^{\leq n}:=\mathcal{D}^{\leq 0}[-n]$ and $\mathcal{D}^{\geq n}:=\mathcal{D}^{\geq 0}[-n]$.

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0},\mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

- $\bullet \ \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \text{and} \ \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ .$
- **3** For any object X in \mathcal{D} , there exists a distinguished triangle

$$X_0 \rightarrow X \rightarrow X_1 \rightarrow X_0[1]$$

where $X_0 \in \mathcal{D}^{\leq 0}, X_1 \in \mathcal{D}^{\geq 1}$.

We use the notation $\mathcal{D}^{\leq n}:=\mathcal{D}^{\leq 0}[-n]$ and $\mathcal{D}^{\geq n}:=\mathcal{D}^{\geq 0}[-n]$. $\mathcal{D}^{\leq 0}\cap\mathcal{D}^{\geq 0}$ is called the *heart* of a *t*-structure.

Let $\mathcal D$ be a triangulated category. Two full subcategories $(\mathcal D^{\leq 0},\mathcal D^{\geq 0})$ are called a *t-structure* on $\mathcal D$ if the following conditions are satisfied.

- $\bullet \ \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \text{and} \ \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ .$
- **3** For any object X in \mathcal{D} , there exists a distinguished triangle

$$X_0 \rightarrow X \rightarrow X_1 \rightarrow X_0[1]$$

where $X_0 \in \mathcal{D}^{\leq 0}, X_1 \in \mathcal{D}^{\geq 1}$.

We use the notation $\mathcal{D}^{\leq n}:=\mathcal{D}^{\leq 0}[-n]$ and $\mathcal{D}^{\geq n}:=\mathcal{D}^{\geq 0}[-n]$. $\mathcal{D}^{\leq 0}\cap\mathcal{D}^{\geq 0}$ is called the *heart* of a *t*-structure.

Definition

Bridgeland

Chirantan Chowdhur

Definition

Let \mathcal{D} be a triangulated category. Two full subcategories $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ are called a *t-structure* on \mathcal{D} if the following conditions are satisfied.

- $\bullet \ \mathcal{D}^{\leq -1} \subset \mathcal{D}^{\leq 0} \ \text{and} \ \mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0} \ .$
- **3** For any object X in \mathcal{D} , there exists a distinguished triangle

$$X_0 \rightarrow X \rightarrow X_1 \rightarrow X_0[1]$$

where $X_0 \in \mathcal{D}^{\leq 0}, X_1 \in \mathcal{D}^{\geq 1}$.

We use the notation $\mathcal{D}^{\leq n} := \mathcal{D}^{\leq 0}[-n]$ and $\mathcal{D}^{\geq n} := \mathcal{D}^{\geq 0}[-n]$. $\mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0}$ is called the *heart* of a *t*-structure.

Definition

A *t*-structure $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ on \mathcal{D} is said to be *bounded* if for every object $E \in \mathcal{D}$, we have $E \in \mathcal{D}^{\leq n} \cap \mathcal{D}^{\geq -n}$ for n >> 0.

Bridgeland

Chiranta Chowdhu

Example

In $\mathcal{D}=\mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Example

In $\mathcal{D}=\mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Example

In $\mathcal{D} = \mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

In $\mathcal{D} = \mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Note: Here the heart is Coh(X) which is an abelian category.

In $\mathcal{D} = \mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Note: Here the heart is Coh(X) which is an abelian category.

It turns out the heart of any t-structure is an abelian category !!

Chirantar Chowdhui

Example

In $\mathcal{D} = \mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Note: Here the heart is Coh(X) which is an abelian category.

It turns out the heart of any t-structure is an abelian category !! Think of the heart of t-structure as building block of the whole triangulated category by shifts.

Chirantar Chowdhur

Example

In $\mathcal{D}=\mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Note: Here the heart is Coh(X) which is an abelian category.

It turns out the heart of any t-structure is an abelian category !!

Think of the heart of t-structure as building block of the whole triangulated category by shifts.

The main example of our interest for the next section will be the case when X is a curve.

Chirantar Chowdhui

Example

In $\mathcal{D} = \mathcal{D}^b(X)$, we have the following *t*-structure defined as follows:

Note: Here the heart is Coh(X) which is an abelian category.

It turns out the heart of any t-structure is an abelian category !!

Think of the heart of t-structure as building block of the whole triangulated category by shifts.

The main example of our interest for the next section will be the case when X is a curve.

Before moving into the stability condition, let us recall the definition of Grothendieck groups and Numerical Grothendieck groups.

Grothendieck groups and Numerical Grothendieck groups.

Bridgeland

Chirantar Chowdhui

Grothendieck groups and Numerical Grothendieck groups.

Bridgeland

Chiranta Chowdhu

Let X be a smooth projective variety over $\mathbb C$ as before.

$$E^{\bullet} \to F^{\bullet} \to G^{\bullet} \to E^{\bullet}[1].$$

$$E^{ullet}
ightarrow F^{ullet}
ightarrow G^{ullet}
ightarrow E^{ullet}[1].$$

It can be shown that $\mathcal{K}(X) = \mathcal{K}(\mathsf{Coh}(X)) = \mathcal{K}(\mathcal{A})$ where \mathcal{A} is the heart of a bounded t-structure of $\mathcal{D}^b(\mathcal{A})$.

$$E^{\bullet} \to F^{\bullet} \to G^{\bullet} \to E^{\bullet}[1].$$

It can be shown that $\mathcal{K}(X) = \mathcal{K}(\mathsf{Coh}(X)) = \mathcal{K}(\mathcal{A})$ where \mathcal{A} is the heart of a bounded t-structure of $\mathcal{D}^b(\mathcal{A})$.

We have the Euler-Poincare pairing defined as

$$E^{\bullet} \to F^{\bullet} \to G^{\bullet} \to E^{\bullet}[1].$$

It can be shown that $\mathcal{K}(X) = \mathcal{K}(\mathsf{Coh}(X)) = \mathcal{K}(\mathcal{A})$ where \mathcal{A} is the heart of a bounded t-structure of $\mathcal{D}^b(\mathcal{A})$.

We have the Euler-Poincare pairing defined as

$$\chi: \mathcal{K}(X) \times \mathcal{K}(X) \to \mathbb{Z}$$

as

$$\chi(E^{\bullet},F^{\bullet}) = \sum_{i=1}^{n} (-1)^{i} \dim_{\mathbb{C}}(\operatorname{Hom}(E^{\bullet},F^{\bullet}[i])).$$

$$E^{\bullet} \to F^{\bullet} \to G^{\bullet} \to E^{\bullet}[1].$$

It can be shown that $\mathcal{K}(X) = \mathcal{K}(\mathsf{Coh}(X)) = \mathcal{K}(\mathcal{A})$ where \mathcal{A} is the heart of a bounded t-structure of $\mathcal{D}^b(\mathcal{A})$.

We have the Euler-Poincare pairing defined as

$$\chi: \mathcal{K}(X) \times \mathcal{K}(X) \to \mathbb{Z}$$

as

$$\chi(E^{\bullet}, F^{\bullet}) = \sum_{i=1}^{n} (-1)^{i} \dim_{\mathbb{C}}(\operatorname{Hom}(E^{\bullet}, F^{\bullet}[i])).$$

The Numerical Grothendieck group $\mathcal{N}(X)$ is defined as $\mathcal{K}(X)/\mathcal{K}(X)^{\perp}$ where the \perp is respect to χ .

$$E^{ullet}
ightarrow F^{ullet}
ightarrow G^{ullet}
ightarrow E^{ullet}[1].$$

It can be shown that $\mathcal{K}(X) = \mathcal{K}(\mathsf{Coh}(X)) = \mathcal{K}(\mathcal{A})$ where \mathcal{A} is the heart of a bounded t-structure of $\mathcal{D}^b(\mathcal{A})$.

We have the **Euler-Poincare** pairing defined as

$$\chi: \mathcal{K}(X) \times \mathcal{K}(X) \to \mathbb{Z}$$

as

$$\chi(E^{\bullet}, F^{\bullet}) = \sum_{i=1}^{n} (-1)^{i} \dim_{\mathbb{C}}(\operatorname{Hom}(E^{\bullet}, F^{\bullet}[i])).$$

The Numerical Grothendieck group $\mathcal{N}(X)$ is defined as $\mathcal{K}(X)/\mathcal{K}(X)^{\perp}$ where the \perp is respect to χ . For X a curve, we have $\mathcal{N}(X)=\mathbb{Z}\oplus\mathbb{Z}$.

Bridgeland stability conditions.

Bridgeland

Chirantai Chowdhui Let $\mathcal A$ be an abelian category. $\mathcal K(\mathcal A)$ be its Grothendieck group.

Definition

Definition

A stability function on an abelian category $\mathcal A$ is a group homomorphism $Z:\mathcal K(\mathcal A)\to\mathbb C$ such that for all $0\ne E\in\mathcal A$,

Definition

A stability function on an abelian category $\mathcal A$ is a group homomorphism $Z:\mathcal K(\mathcal A)\to\mathbb C$ such that for all $0\neq E\in\mathcal A$,

Z(E) lies in $\mathbb{H} \cup \mathbb{R}_{<0}$.

Definition

A stability function on an abelian category $\mathcal A$ is a group homomorphism $Z:\mathcal K(\mathcal A)\to\mathbb C$ such that for all $0\neq E\in\mathcal A$,

Z(E) lies in $\mathbb{H} \cup \mathbb{R}_{<0}$.

Definition

Definition

A stability function on an abelian category $\mathcal A$ is a group homomorphism $Z:\mathcal K(\mathcal A)\to\mathbb C$ such that for all $0\ne E\in\mathcal A$,

Z(E) lies in $\mathbb{H} \cup \mathbb{R}_{<0}$.

Definition

The *phase* of an object $E \in \mathcal{A}$ with respect to a stability function Z is defined by $\phi(E) := \frac{1}{\pi} \arg(Z(E))$.

Definition

A stability function on an abelian category $\mathcal A$ is a group homomorphism $Z:\mathcal K(\mathcal A)\to\mathbb C$ such that for all $0\ne E\in\mathcal A$,

Z(E) lies in $\mathbb{H} \cup \mathbb{R}_{<0}$.

Definition

The *phase* of an object $E \in \mathcal{A}$ with respect to a stability function Z is defined by $\phi(E) := \frac{1}{\pi} \arg(Z(E))$.

An object $0 \neq E \in \mathcal{A}$ is said to be *(semi)stable* if $\forall A \subset E$ subobjects, we have $\phi(A)(\leq)\phi(E)$.

Bridgeland stability conditions.

Bridgeland

Chirantai Chowdhui

Let \boldsymbol{X} be a smooth projective curve.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function. If rk(E) > 0, then we are done.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of points and deg(E) counts the number of points.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies $Z(E) \in \mathbb{R}_{<0}$.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies $Z(E) \in \mathbb{R}_{<0}$.

So Z is a stability function on Coh(X).

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies $Z(E) \in \mathbb{R}_{<0}$.

So Z is a stability function on Coh(X).

If $A \subseteq E$, then $\phi(A) \le \phi(E)$ is equivalent of saying $\mu(A) \le \mu(E)$ where $\mu(E)$ is the μ -stability.

Chirantan Chowdhur

Example

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies $Z(E) \in \mathbb{R}_{<0}$.

So Z is a stability function on Coh(X).

If $A \subseteq E$, then $\phi(A) \le \phi(E)$ is equivalent of saying $\mu(A) \le \mu(E)$ where $\mu(E)$ is the μ -stability. Here μ stability of a torsion free sheaf E is defined as

$$\mu(E) = \deg(E) / \operatorname{rk}(E)$$
.

Let X be a smooth projective curve. We consider the standard t-structure on $\mathcal{D}(X)$. We define the function Z on $\mathcal{K}(\mathsf{Coh}(X))$ as

$$Z(E) = -\deg(E) + i\operatorname{rk}(E)$$

We show that Z is a stability function.

If rk(E) > 0, then we are done.

If rk(E) = 0, then E is a torsion sheaf and thus E is supported on a finite number of points and deg(E) counts the number of points.

Thus deg(E) > 0 which implies $Z(E) \in \mathbb{R}_{<0}$.

So Z is a stability function on Coh(X).

If $A\subseteq E$, then $\phi(A)\leq \phi(E)$ is equivalent of saying $\mu(A)\leq \mu(E)$ where $\mu(E)$ is the μ -stability. Here μ stability of a torsion free sheaf E is defined as $\mu(E)=\deg(E)/\operatorname{rk}(E)$.

It turns out that semistable objects of Z are the semistable sheaves.

Bridgeland stability conditions.

Bridgeland

Chiranta Chowdhu Chirantan Chowdhur

A stability condition (Z,\mathcal{P}) on a triangulated category \mathcal{D} consists of a group homomorphism $Z:\mathcal{K}(\mathcal{D})\to\mathbb{C}$ called the *central charge* and full additive subcategories $\mathcal{P}(\phi)$ for each $\phi\in\mathbb{R}$ satisfying the following axioms:

• if $E \in \mathcal{P}(\phi)$, then $Z(E) = m(E)e^{i\pi\phi}$ for some $m(E) \in \mathbb{R} > 0$.

- if $E \in \mathcal{P}(\phi)$, then $Z(E) = m(E)e^{i\pi\phi}$ for some $m(E) \in \mathbb{R} > 0$.

Chirantan Chowdhur

Definition

- if $E \in \mathcal{P}(\phi)$, then $Z(E) = m(E)e^{i\pi\phi}$ for some $m(E) \in \mathbb{R} > 0$.
- \bullet if $\phi_1 > \phi_2$ and $A_j \in \mathcal{P}(\phi_j)$, then $\mathsf{Hom}_{\mathcal{D}}(A_1, A_2) = 0$.

- if $E \in \mathcal{P}(\phi)$, then $Z(E) = m(E)e^{i\pi\phi}$ for some $m(E) \in \mathbb{R} > 0$.
- \bullet if $\phi_1 > \phi_2$ and $A_j \in \mathcal{P}(\phi_j)$, then $\mathsf{Hom}_{\mathcal{D}}(A_1, A_2) = 0$.
- $oldsymbol{0}$ for any $E \in \mathcal{D}$, there exists a finite sequence of real numbers

$$\phi_1 > \phi_2 > \dots > \phi_n$$

A stability condition $(\mathcal{Z},\mathcal{P})$ on a triangulated category \mathcal{D} consists of a group homomorphism $\mathcal{Z}:\mathcal{K}(\mathcal{D})\to\mathbb{C}$ called the *central charge* and full additive subcategories $\mathcal{P}(\phi)$ for each $\phi\in\mathbb{R}$ satisfying the following axioms:

- if $E \in \mathcal{P}(\phi)$, then $Z(E) = m(E)e^{i\pi\phi}$ for some $m(E) \in \mathbb{R} > 0$.
- \bullet if $\phi_1 > \phi_2$ and $A_j \in \mathcal{P}(\phi_j)$, then $\mathsf{Hom}_{\mathcal{D}}(A_1, A_2) = 0$.
- $oldsymbol{0}$ for any $E \in \mathcal{D}$, there exists a finite sequence of real numbers

$$\phi_1 > \phi_2 > \cdots > \phi_n$$

and a collection of triangles

such that $A_i \in \mathcal{P}(\phi_i)$ for all j.

Chirantar Chowdhur

Theorem

To give a stability condition on a triangulated category is equivalent to give a bounded t-structure and a stability function on its heart with the Harder-Narasimhan property

Theorem

To give a stability condition on a triangulated category is equivalent to give a bounded t-structure and a stability function on its heart with the Harder-Narasimhan property (any object has a finite filtration of semistable objects).

Chirantar Chowdhui

Theorem

To give a stability condition on a triangulated category is equivalent to give a bounded t-structure and a stability function on its heart with the Harder-Narasimhan property (any object has a finite filtration of semistable objects).

Example

Chirantan Chowdhur

Theorem

To give a stability condition on a triangulated category is equivalent to give a bounded t-structure and a stability function on its heart with the Harder-Narasimhan property (any object has a finite filtration of semistable objects).

Example

The pair (Z, Coh X) is a stability condition on X.

Theorem

To give a stability condition on a triangulated category is equivalent to give a bounded t-structure and a stability function on its heart with the Harder-Narasimhan property (any object has a finite filtration of semistable objects).

Example

The pair $(Z, \operatorname{Coh} X)$ is a stability condition on X. We have already seen it is a stability function.

Theorem

To give a stability condition on a triangulated category is equivalent to give a bounded t-structure and a stability function on its heart with the Harder-Narasimhan property (any object has a finite filtration of semistable objects).

Example

The pair $(Z, \operatorname{Coh} X)$ is a stability condition on X. We have already seen it is a stability function. As the semistable objects are semistable sheaves, we have the Harder-Narasimhan property.

Bridgeland Stability Conditions.

Bridgeland

Chirantai Chowdhui

Bridgeland Stability Conditions.

Bridgeland

Chirantan Chowdhur

Important Facts:

 $\textbf{ If } X \text{ is a smooth projective curve of genus } \geq 1, \text{the space of stability conditions} \\ \operatorname{Stab}(\mathcal{D}(X)) \cong \widehat{\operatorname{Gl}_2^+(\mathbb{R})}.$

- If X is a smooth projective curve of genus ≥ 1 , the space of stability conditions $\operatorname{Stab}(\mathcal{D}(X)) \cong \widehat{\operatorname{Gl}_{+}^{2}(\mathbb{R})}$.
- **③** If dim $X \ge 2$, there is no numerical stability condition (stability functions factoring via the numerical Grothendieck Group $\mathcal{N}(X) \to \mathbb{C}$) with heart Coh(X).

- If X is a smooth projective curve of genus ≥ 1 , the space of stability conditions $\operatorname{Stab}(\mathcal{D}(X)) \cong \widehat{\operatorname{Gl}_2^+}(\mathbb{R})$.
- ② If dim $X \geq 2$, there is no numerical stability condition (stability functions factoring via the numerical Grothendieck Group $\mathcal{N}(X) \to \mathbb{C}$) with heart $\mathsf{Coh}(X)$. Thus it is not at all obvious that $\mathsf{Stab}(\mathcal{D})$ is non-empty for any triangulated category \mathcal{D} .

- If X is a smooth projective curve of genus ≥ 1 , the space of stability conditions $\operatorname{Stab}(\mathcal{D}(X)) \cong \widehat{\operatorname{Gl}_2^+}(\mathbb{R})$.
- **9** If dim $X \geq 2$, there is no numerical stability condition (stability functions factoring via the numerical Grothendieck Group $\mathcal{N}(X) \to \mathbb{C}$) with heart $\mathsf{Coh}(X)$. Thus it is not at all obvious that $\mathsf{Stab}(\mathcal{D})$ is non-empty for any triangulated category \mathcal{D} .

Thus for higher dimensional cases, we need to devise other ways to construct t-structures.

- If X is a smooth projective curve of genus ≥ 1 , the space of stability conditions $\operatorname{Stab}(\mathcal{D}(X)) \cong \widehat{\operatorname{Gl}_2^+}(\mathbb{R})$.
- ② If dim $X \geq 2$, there is no numerical stability condition (stability functions factoring via the numerical Grothendieck Group $\mathcal{N}(X) \to \mathbb{C}$) with heart $\mathsf{Coh}(X)$. Thus it is not at all obvious that $\mathsf{Stab}(\mathcal{D})$ is non-empty for any triangulated category \mathcal{D} .

Thus for higher dimensional cases, we need to devise other ways to construct t-structures. This shall be explained later.

- If X is a smooth projective curve of genus ≥ 1 , the space of stability conditions $\operatorname{Stab}(\mathcal{D}(X)) \cong \widehat{\operatorname{Gl}_2^+}(\mathbb{R})$.
- If dim X ≥ 2, there is no numerical stability condition (stability functions factoring via the numerical Grothendieck Group $\mathcal{N}(X) \to \mathbb{C}$) with heart Coh(X). Thus it is not at all obvious that Stab(\mathcal{D}) is non-empty for any triangulated category \mathcal{D}.

Thus for higher dimensional cases, we need to devise other ways to construct t-structures. This shall be explained later. Before that, let us study about $\mathsf{Stab}(\mathcal{D})$.

Deformation property of stability conditions.

Bridgeland

Chirantar Chowdhui

Deformation property of stability conditions.

Bridgeland

Chowdhu

Setup:

 $\ensuremath{\mathcal{D}}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

 $\ensuremath{\mathcal{D}}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z:K(\mathcal{D})\to\mathbb{C}$ factors through Λ via ν .

 $\ensuremath{\mathcal{D}}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z: \mathcal{K}(\mathcal{D}) \to \mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Chirantan Chowdhur

Setup:

 $\ensuremath{\mathcal{D}}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z: \mathcal{K}(\mathcal{D}) \to \mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Definition

Chirantan Chowdhur

Setup:

 ${\mathcal D}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z:K(\mathcal{D})\to\mathbb{C}$ factors through Λ via $\nu.$

Now we define the support property.

Definition

Let $Q: \Lambda_{\mathbb{R}} := \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}$ be a quadratic form. We say that a stability condition (Z, \mathcal{P}) satisfies the *support property* with respect to Q if:

Chirantan Chowdhur

Setup:

 ${\mathcal D}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z: \mathcal{K}(\mathcal{D}) \to \mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Definition

Let $Q: \Lambda_{\mathbb{R}} := \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}$ be a quadratic form. We say that a stability condition (Z, \mathcal{P}) satisfies the *support property* with respect to Q if:

• $\ker Z \subset \Lambda_R$ is negative definite with respect to Q.

Chirantan Chowdhur

Setup:

 ${\mathcal D}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z: \mathcal{K}(\mathcal{D}) \to \mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Definition

Let $Q: \Lambda_{\mathbb{R}} := \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}$ be a quadratic form. We say that a stability condition (Z, \mathcal{P}) satisfies the *support property* with respect to Q if:

- **1** ker $Z \subset \Lambda_R$ is negative definite with respect to Q.
- ② For all semistable objects E, we have $Q(v(E)) \ge 0$.

 ${\mathcal D}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z:K(\mathcal{D})\to\mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Definition

Let $Q: \Lambda_{\mathbb{R}} := \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}$ be a quadratic form. We say that a stability condition (Z, \mathcal{P}) satisfies the *support property* with respect to Q if:

- **1** ker $Z \subset \Lambda_R$ is negative definite with respect to Q.
- ② For all semistable objects E, we have $Q(v(E)) \ge 0$.

Theorem

 ${\mathcal D}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z: \mathcal{K}(\mathcal{D}) \to \mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Definition

Let $Q: \Lambda_{\mathbb{R}} := \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}$ be a quadratic form. We say that a stability condition (Z, \mathcal{P}) satisfies the *support property* with respect to Q if:

- **1** ker $Z \subset \Lambda_R$ is negative definite with respect to Q.
- ② For all semistable objects E, we have $Q(v(E)) \ge 0$.

Theorem

The space of stability conditions (assumed to be non-empty) with support property $\mathsf{Stab}_{\Lambda}(\mathcal{D}) \text{ is a complex manifold of dimension } m \text{ } (m = \dim_{\mathbb{Z}} \Lambda).$

 ${\mathcal D}$ will be a triangulated category with a surjective group homomorphism

$$v:K(\mathcal{D})\to \Lambda$$

where $\Lambda \cong \mathbb{Z}^m$ for some $m \in \mathbb{N}$.

Also we have assumed that the stability condition $Z:K(\mathcal{D})\to\mathbb{C}$ factors through Λ via ν .

Now we define the support property.

Definition

Let $Q: \Lambda_{\mathbb{R}} := \Lambda \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{R}$ be a quadratic form. We say that a stability condition $(\mathcal{Z}, \mathcal{P})$ satisfies the *support property* with respect to Q if:

- **1** ker $Z \subset \Lambda_R$ is negative definite with respect to Q.
- ② For all semistable objects E, we have $Q(v(E)) \ge 0$.

Theorem

The space of stability conditions (assumed to be non-empty) with support property $\operatorname{Stab}_{\Lambda}(\mathcal{D})$ is a complex manifold of dimension m ($m=\dim_{\mathbb{Z}}\Lambda$).

Thus, for curves it is a complex manifold of dimesion 2 as $\mathcal{N}(X)$ is of dimension 2.

Deformation property of stability conditions.

Bridgeland

Chirantai Chowdhui Bridgeland

Chirantan Chowdhur

Firstly, we define topologies on the following collections:

- Firstly, we define topologies on the following collections:
 - the ring $\mathsf{Hom}(\Lambda,\mathbb{C})$.

- Firstly, we define topologies on the following collections:
 - $\bullet \ \ \text{the ring Hom}(\Lambda,\mathbb{C}).$
 - $\textbf{ 0} \ \, \text{the space of stability conditions } \mathsf{Stab}_{\Lambda}(\mathcal{D}).$

- Firstly, we define topologies on the following collections:
 - the ring $Hom(\Lambda, \mathbb{C})$.
- the space of stability conditions Stab_Λ(D).
 The main goal is to show that the natural map :
 - $\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D}) \to \mathsf{Hom}(\Lambda,\mathbb{C})$

- Firstly, we define topologies on the following collections:
 - the ring Hom(Λ, ℂ).
 the space of stability conditions Stab_Λ(D).
- The main goal is to show that the natural map:

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathcal{Z}(Z,\mathcal{P})=Z$$

- Firstly, we define topologies on the following collections:
 - the ring Hom(Λ, ℂ).
 the space of stability conditions Stab_Λ(D).
- 2 The main goal is to show that the natural map :

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathscr{Z}(Z,\mathcal{P})=Z$$

Bridgeland

Chirantan Chowdhur

Sketch of the proof.

- Firstly, we define topologies on the following collections:
 - the ring Hom(Λ, ℂ).
 the space of stability conditions Stab_Λ(D).
- ② The main goal is to show that the natural map :

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathcal{Z}(Z,\mathcal{P})=Z$$

is a local homeomorphism.

We prove the theorem by the concept of Harder-Narasimhan polygons under the following assumption.

- Firstly, we define topologies on the following collections:
 - the ring $\mathsf{Hom}(\Lambda,\mathbb{C})$.
 - 2 the space of stability conditions $\operatorname{Stab}_{\Lambda}(\mathcal{D})$.
- The main goal is to show that the natural map :

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathscr{Z}(Z,\mathcal{P})=Z$$

- We prove the theorem by the concept of Harder-Narasimhan polygons under the following assumption.
 - The quadratic form Q is non-degenerate and has signature $(2, \operatorname{rk} \Lambda 2)$.

- Firstly, we define topologies on the following collections:
 - 1 the ring $\mathsf{Hom}(\Lambda,\mathbb{C})$. 2 the space of stability conditions $\mathsf{Stab}_{\Lambda}(\mathcal{D})$.
- ② The main goal is to show that the natural map :

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathcal{Z}(Z,\mathcal{P})=Z$$

- We prove the theorem by the concept of Harder-Narasimhan polygons under the following assumption.
 - The quadratic form Q is non-degenerate and has signature $(2, \operatorname{rk} \Lambda 2)$.

- Firstly, we define topologies on the following collections:
 - the ring $\mathsf{Hom}(\Lambda,\mathbb{C})$.
 - **9** the space of stability conditions $\operatorname{Stab}_{\Lambda}(\mathcal{D})$.
- The main goal is to show that the natural map :

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathcal{Z}(Z,\mathcal{P})=Z$$

- We prove the theorem by the concept of Harder-Narasimhan polygons under the following assumption.
 - The quadratic form Q is non-degenerate and has signature $(2, \operatorname{rk} \Lambda 2)$.
- ${f 3}$ The fact that ${\cal Z}$ is locally injective follows from the definition of the topologies. The support property is mainly needed to show the fact that locally the inverse map exists and is continuous.

- Firstly, we define topologies on the following collections:
 - the ring $\mathsf{Hom}(\Lambda,\mathbb{C})$.
 - ② the space of stability conditions $\operatorname{Stab}_{\Lambda}(\mathcal{D})$.
- The main goal is to show that the natural map :

$$\mathscr{Z}:\mathsf{Stab}_{\Lambda}(\mathcal{D})\to\mathsf{Hom}(\Lambda,\mathbb{C})$$

given by

$$\mathscr{Z}(Z,\mathcal{P})=Z$$

- We prove the theorem by the concept of Harder-Narasimhan polygons under the following assumption.
 - The quadratic form Q is non-degenerate and has signature $(2, \operatorname{rk} \Lambda 2)$.
- The fact that \(\mathscr{Z} \) is locally injective follows from the definition of the topologies. The support property is mainly needed to show the fact that locally the inverse map exists and is continuous.
- Finally, we show that we can reduce to the case where the assumption can be made.

Bridgeland

Chiranta Chowdhu

Bridgeland

Chirantai

As stated before, we need a way to construct new t-structures for the case of higher dimensions.

Bridgeland

Chirantar

As stated before, we need a way to construct new t-structures for the case of higher dimensions. Here X is a smooth projective surface.

Bridgeland

Chirantan Chowdhur As stated before, we need a way to construct new t-structures for the case of higher dimensions. Here X is a smooth projective surface. This is done by tilting of abelian categories.

Bridgeland

Chirantan Chowdhur As stated before, we need a way to construct new t-structures for the case of higher dimensions. Here X is a smooth projective surface. This is done by tilting of abelian categories. At first, we define what is a torsion pair.

Definition

Bridgeland

Chirantan Chowdhur As stated before, we need a way to construct new t-structures for the case of higher dimensions. Here X is a smooth projective surface. This is done by tilting of abelian categories. At first, we define what is a torsion pair.

Definition

Let $(\mathcal{T}, \mathcal{F})$ be a pair of full subcategories in an abelian category \mathcal{A} . This is said to be a **torsion pair** in \mathcal{A} if the following conditions are satisfied.

Definition

Let $(\mathcal{T},\mathcal{F})$ be a pair of full subcategories in an abelian category \mathcal{A} . This is said to be a **torsion pair** in \mathcal{A} if the following conditions are satisfied.

 $\textbf{ 1} \ \, \mathsf{Hom}(T,F) = 0 \ \, \mathsf{for all} \ \, T \in \mathcal{T} \ \, \mathsf{and} \ \, F \in \mathcal{F}.$

Definition

Let $(\mathcal{T}, \mathcal{F})$ be a pair of full subcategories in an abelian category \mathcal{A} . This is said to be a **torsion pair** in \mathcal{A} if the following conditions are satisfied.

- ② For all $X \in \mathcal{A}$, there exists a short exact sequence

$$0 \to t(X) \to X \to X/t(X) \to 0$$

where $t(X) \in \mathcal{T}$ and $X/t(X) \in \mathcal{F}$.

Definition

Let $(\mathcal{T}, \mathcal{F})$ be a pair of full subcategories in an abelian category \mathcal{A} . This is said to be a **torsion pair** in \mathcal{A} if the following conditions are satisfied.

- ② For all $X \in \mathcal{A}$, there exists a short exact sequence

$$0 \to t(X) \to X \to X/t(X) \to 0$$

where $t(X) \in \mathcal{T}$ and $X/t(X) \in \mathcal{F}$.

Recall that any torsion-free sheaf E has a Harder Narasimhan filtration

Definition

Let $(\mathcal{T}, \mathcal{F})$ be a pair of full subcategories in an abelian category \mathcal{A} . This is said to be a **torsion pair** in \mathcal{A} if the following conditions are satisfied.

- **1** Hom(T, F) = 0 for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
- ② For all $X \in \mathcal{A}$, there exists a short exact sequence

$$0 \rightarrow t(X) \rightarrow X \rightarrow X/t(X) \rightarrow 0$$

where $t(X) \in \mathcal{T}$ and $X/t(X) \in \mathcal{F}$.

Recall that any torsion-free sheaf E has a Harder Narasimhan filtration

$$0 = E_0 \subset E_1 \subset ...E_n = E$$

where we define $\mu_i = \mu_F(E_i/E_{i-1})$ (here F is an ample divisor needed for definition of stability).

Definition

Let $(\mathcal{T}, \mathcal{F})$ be a pair of full subcategories in an abelian category \mathcal{A} . This is said to be a **torsion pair** in \mathcal{A} if the following conditions are satisfied.

- **1** Hom(T, F) = 0 for all $T \in \mathcal{T}$ and $F \in \mathcal{F}$.
- ② For all $X \in \mathcal{A}$, there exists a short exact sequence

$$0 \rightarrow t(X) \rightarrow X \rightarrow X/t(X) \rightarrow 0$$

where $t(X) \in \mathcal{T}$ and $X/t(X) \in \mathcal{F}$.

Recall that any torsion-free sheaf E has a Harder Narasimhan filtration

$$0 = E_0 \subset E_1 \subset ...E_n = E$$

where we define $\mu_i = \mu_F(E_i/E_{i-1})$ (here F is an ample divisor needed for definition of stability). Also, we have

$$\mu_{F-max}(E) = \mu_1 > \mu_2 > \cdots > \mu_n(E) = \mu_{F-min}(E).$$

Bridgeland

Chiranta Chowdhu

Bridgeland

Chirantai Chowdhui

Let D,F be $\mathbb R$ divisors on a smooth projective surface X with F ample.

Bridgeland

Chirantar Chowdhui

Let D,F be $\mathbb R$ divisors on a smooth projective surface X with F ample. We define torsion pair on $\mathrm{Coh}(X)$ as

$$\mathcal{T} = \{ ext{Torsion Sheaves} \} \cup \left\{ E | \ \mu_{F-min}(E) > D.F
ight\}$$

$$\mathcal{T} = \{ \mathsf{Torsion Sheaves} \} \cup \left\{ E | \ \mu_{F-min}(E) > D.F \right\}$$

and

$$\mathcal{F} = \left\{ E | \ \mu_{F-max}(E) \leq D.F \right\}.$$

$$\mathcal{T} = \{ ext{Torsion Sheaves} \} \cup \left\{ E | \ \mu_{F-min}(E) > D.F \right\}$$

and

$$\mathcal{F} = \left\{ E | \ \mu_{F-max}(E) \leq D.F \right\}.$$

Theorem

$$\mathcal{T} = \{ ext{Torsion Sheaves} \} \cup \left\{ E | \ \mu_{F-min}(E) > D.F \right\}$$

and

$$\mathcal{F} = \left\{ E | \ \mu_{F-max}(E) \leq D.F \right\}.$$

Theorem

$$\mathcal{A}_{(D,F)}^{\#}=\{E^{\bullet}\in\mathcal{D}^b(X)|H^i(E^{\bullet})=0, \forall i\neq 0, -1, H^{-1}(E^{\bullet})\in\mathcal{F}, H^0(E^{\bullet})\in\mathcal{T}\}$$

is an abelian category and it is the heart of a bounded t-structure.

$$\mathcal{T} = \{ \mathsf{Torsion Sheaves} \} \cup \left\{ E | \ \mu_{F-min}(E) > D.F \right\}$$

and

$$\mathcal{F} = \left\{ E | \ \mu_{F-max}(E) \leq D.F \right\}.$$

Theorem

$$\mathcal{A}_{(D,F)}^{\#}=\{E^{\bullet}\in\mathcal{D}^b(X)|H^i(E^{\bullet})=0, \forall i\neq 0, -1, H^{-1}(E^{\bullet})\in\mathcal{F}, H^0(E^{\bullet})\in\mathcal{T}\}$$

is an abelian category and it is the heart of a bounded t-structure. This is called the tilted heart.

$$\mathcal{T} = \{ ext{Torsion Sheaves} \} \cup \left\{ E | \mu_{F-min}(E) > D.F \right\}$$

and

$$\mathcal{F} = \left\{ E | \ \mu_{F-max}(E) \leq D.F \right\}.$$

Theorem

$$\mathcal{A}_{(D,F)}^{\#}=\{E^{\bullet}\in\mathcal{D}^b(X)|H^i(E^{\bullet})=0, \forall i\neq 0, -1, H^{-1}(E^{\bullet})\in\mathcal{F}, H^0(E^{\bullet})\in\mathcal{T}\}$$

is an abelian category and it is the heart of a bounded t-structure. This is called the tilted heart.

So we have a new heart. Now we need to construct a stability function.

Bridgeland

Chiranta Chowdhu Chirantan Chowdhury

For a sheaf $E \in Coh(X)$, we define:

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. \operatorname{ch}(E))$$

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}.\operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}.\operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

$$- \operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. \operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

$$-\operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

Now for extending it to $\mathcal{A}_{(D,F)}^{\#}$, we define :

$$Z_{(D,F)}(E^{\bullet}) = Z_{(D,F)}(H^{0}(E^{\bullet})) - Z_{(D,F)}(H^{-1}(E^{\bullet})).$$

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. \operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

$$- \operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

Now for extending it to $\mathcal{A}_{(D,F)}^{\#}$, we define :

$$Z_{(D,F)}(E^{\bullet}) = Z_{(D,F)}(H^{0}(E^{\bullet})) - Z_{(D,F)}(H^{-1}(E^{\bullet})).$$

Theorem

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. \operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

$$- \operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

Now for extending it to $\mathcal{A}_{(D,F)}^{\#}$, we define :

$$Z_{(D,F)}(E^{\bullet}) = Z_{(D,F)}(H^{0}(E^{\bullet})) - Z_{(D,F)}(H^{-1}(E^{\bullet})).$$

Theorem

Let X be a smooth projective surface.

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. \operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

$$- \operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

Now for extending it to $\mathcal{A}_{(D,F)}^{\#}$, we define :

$$Z_{(D,F)}(E^{\bullet}) = Z_{(D,F)}(H^{0}(E^{\bullet})) - Z_{(D,F)}(H^{-1}(E^{\bullet})).$$

Theorem

Let X be a smooth projective surface. The pair $(Z_{(D,F)}, \mathcal{A}_{(D,F)}^{\#})$ is a Bridgeland stability condition on $\mathcal{D}(X)$.

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. \operatorname{ch}(E))$$

Explicitly $Z_{(D,F)}$ is

$$- \operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

Now for extending it to $\mathcal{A}_{(D,F)}^{\#}$, we define :

$$Z_{(D,F)}(E^\bullet)=Z_{(D,F)}(H^0(E^\bullet))-Z_{(D,F)}(H^{-1}(E^\bullet)).$$

Theorem (

Let X be a smooth projective surface. The pair $(Z_{(D,F)}, \mathcal{A}_{(D,F)}^{\#})$ is a Bridgeland stability condition on $\mathcal{D}(X)$. Thus $\operatorname{Stab}(\mathcal{D}(X)) \neq \phi$.

For a sheaf $E \in Coh(X)$, we define:

$$Z_{(D,F)}(E) = -(e^{-(D+iF)}. ch(E))$$

Explicitly $Z_{(D,F)}$ is

$$- \operatorname{ch}_2(E) - \operatorname{rk}(E)(D^2/2 - F^2/2) + D.c_1(E) + iF.(c_1(E) - \operatorname{rk}(E).D)$$

Now for extending it to $\mathcal{A}_{(D,F)}^{\#}$, we define :

$$Z_{(D,F)}(E^{\bullet}) = Z_{(D,F)}(H^{0}(E^{\bullet})) - Z_{(D,F)}(H^{-1}(E^{\bullet})).$$

Theorem

Let X be a smooth projective surface. The pair $(Z_{(D,F)}, \mathcal{A}_{(D,F)}^{\#})$ is a Bridgeland stability condition on $\mathcal{D}(X)$. Thus $\operatorname{Stab}(\mathcal{D}(X)) \neq \phi$.

That's all folks!!