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Abstract

In this lecture we are going to define Hochschild homology for associative unital algebras and discuss
some basic properties. Especially, we are interested in

• relation to the module of relative differentials,

• Hochschild homology of matrix algebras.

Our reference of choice will be Chapter 1 of Loday’s Cyclic Homology ([Lod98]).

1 Presimplicial Tools

We start with a brief introduction of some homological algebra on a presimplicial level. Fixing this notion
turns out to be useful when it comes to classical computations one encounters in homological algebra.
In the following, we will simply write module for a module over some fixed ring, and morphism for a
morphism in the adequate category.

Definition 1.1. A presimplicial module C· is a collection of modules Cn, n ≥ 0, together with morphisms,
so called face maps (or face operators),

di,n : Cn −→ Cn−1 for i ∈ {0, . . . , n}

such that for any n,

di,n−1 ◦ dj,n = dj−1,n−1 ◦ di,n for 0 ≤ i < j ≤ n.

It may happen that we add a superscript on some face maps in order to keep track of the involved
modules (if more than one).

One can turn a presimplicial module into a complex ([Lod98, 1.0.7]) by defining the boundary maps
to be given by

dn ··=
n!

i=0

(−1)idi,n.

Defining a morphism of presimplicial modules f· : C· −→ C ′
· to consist of morphisms fn : Cn −→ C ′

n such
that fn−1 ◦ dCi,n = dC

′
i,n ◦ fn, one easily checks that f· can be regarded as a morphism of the complexes we

have attached in the above sense.

1WARNING FOR ALLERGY SUFFERERS: May contain too many indices.
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Definition 1.2. Let f·, g· : C· −→ C ′
· be morphisms of presimplicial modules. A collection h·,· of mor-

phisms

hi,n : Cn −→ C ′
n+1 for i ∈ {0, . . . n}, n ≥ 0

is said to be a presimplicial homotopy from f· to g· if for any n,

(1) dC
′

i,n+1 ◦ hj,n = hj−1,n−1 ◦ dCi,n for all i < j,

(2) dC
′

i,n+1 ◦ hi,n = dC
′

i,n+1 ◦ hi−1,n for all 0 < i ≤ n,

(3) dC
′

i,n+1 ◦ hj,n = hj,n−1 ◦ dCi−1,n for all i > j + 1,

(4) dC0,n+1 ◦ h0,n = fn,

(5) dCn+1,n+1 ◦ hn,n = gn.

This notion will be used when it comes to defining a homotopy between certain morphisms, because
one directly computes that if h·,· is a presimplicial homotopy from f· to g·, then the collection given by

hn ··=
n!

i=0

(−1)ihi,n

is a homotopy from f· to g·.

2 Hochschild Homology

We will now introduce Hochschild homology an discuss some elementary facts about it. The definition we
will give is the original one of Hochschild himself (instead of the definition using derived functors) since
it is more closely related to the definition of cyclic homology, taking place in the next lectures.

Unless stated otherwise, k is a commutative ring, A is an associative unital k-algebra and M is an
A-bimodule.

Definition 2.1. We define Cn(A,M) ··= M ⊗A⊗n, the tensor products taken over k, together with

bn ··=
n!

i=0

(−1)idi,n : Cn(A,M) −→ Cn−1(A,M),

where

d0,n(m⊗ a1 ⊗ · · ·⊗ an) ··= ma1 ⊗ a2 ⊗ · · ·⊗ an,

di,n(m⊗ a1 ⊗ · · ·⊗ an) ··= m⊗ a1 ⊗ · · ·⊗ aiai+1 ⊗ · · ·⊗ an for i ∈ {1, . . . , n− 1}
dn,n(m⊗ a1 ⊗ · · ·⊗ an) ··= anm⊗ a2 ⊗ · · ·⊗ an−1.

As one checks that bn◦bn+1 = 0 by computations on the presimplicial level, we get a complex C·(A,M),
called the Hochschild complex of A with coefficients in M . We can therefore form its homology groups,
denoted Hn(A,M), and call them Hochschild homology groups of A with coefficients in M . In the case
where M = A, we write

HHn(A) ··= Hn(A,A)

for the Hochschild homology groups of A.
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Remark 2.2. One may have noticed we did not use that A is unital. However, Hochschild homology for
non-unital algebras is defined slightly different. We might see this later.

Taking Hochschild homology behaves functorial in the following sense. If f : M −→ M ′ is an A-
bimodule morphism, we get induced morphisms

fn : Hn(A,M) −→ Hn(A,M
′)

[m⊗ a1 ⊗ · · ·⊗ an] (−→ [f(m)⊗ a1 ⊗ · · ·⊗ an].

On the other hand, if g : A −→ A′ is a k-algebra morphism and M ′ is an A′-bimodule, then we have
induced morphisms

gn : Hn(A,M
′) −→ Hn(A

′,M ′)

[m⊗ a1 ⊗ · · ·⊗ an] (−→ [m⊗ g(a1)⊗ · · ·⊗ g(an)],

where M ′ is viewed as an A-bimodule via g. In particular we see that for M = A,

HHn :
ass,unitk-Alg −→ k-Mod

is a (covariant) functor. One can moreover show that

HHn(A×A′) = HHn(A)⊕HHn(A
′).

Remark 2.3. One can show that the center of A, Z(A) ··= {z ∈ A : za = az for any a ∈ A}, acts on
Cn(A,M) by declaring

z ·m⊗ a1 ⊗ · · ·⊗ an ··= zm⊗ a1 ⊗ · · ·⊗ an,

inducing a Z(A)-module structure on Cn(A,M). One computes that this induces an endomorphism of
C·(A,M), in turn inducing a Z(A)-module structure on Hn(A,M). In particular, if A is commutative,
Hn(A,M) is an A-module.

Attention. The notation of the Hochschild homology groups does not take care of the underlying
ring k. However, they may change if k does (see [Lod98, 1.1.18]).

Example 2.4. Let us discuss some elementary examples.

(i) By definition one has

H0(A,M) = M/{am−ma : a ∈ A,m ∈ M},

which is also called the module of coinvariants of M by A. Therefore, denoting [A,A] the commu-
tator of A, one directly gets

HH0(A) = A/[A,A].

(ii) Under some canonical isomorphisms, the Hochschild complex of k itself is given by

. . .
id−→ k

0−→ k
id−→ k

0−→ k.

Indeed, every di acts as the identity, and hence b2n = id and b2n+1 = 0. Therefore,

HHn(k) =

"
k if n = 0

0 if n > 0.
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(iii) Let k[ε] = k⊕kε denote the algebra of dual numbers over k (ε2 = 0) and assume that 2 is invertible
in k. Clearly, for any n ≥ 1, 1 ⊗ ε⊗(2n+1) is a (2n + 1)-cycle and ε ⊗ ε⊗(2n) is a 2n-cycle. Putting
some work in, one can show that the classes of those cycles span HH2n+1(k[ε]), resp. HH2n(k[ε]).

(iv) The next example is going to be an appetiser for trace maps and Hochschild homology of matrix
algebras. We denote by Mr(A) the matrix algebra of r × r matrices with coefficients in A. The
abelianised trace map Mr(A) −→ A/[A,A] induces an isomorphism

Mr(A)/[Mr(A),Mr(A)] ∼= A/[A,A],

so that we can use (i) to compute

HH0(Mr(A)) ∼= HH0(A).

Spoiler Alert.2

Kähler-Differentials. We now want to establish a first relation between Hochschild homology of a
commutative k-algebra A and the module of relative differentials of A over k. We denote the latter by
Ω1
A/k - it is generated by the k-linear symbols da for a ∈ A, subject to the relation

dab = a db+ b da for a, b ∈ A.

Proposition 2.5. 1. There is a canonical isomorphism HH1(A) ∼= Ω1
A/k.

2. If M is a symmetric A-bimodule, then H1(A,M) ∼= M ⊗A Ω1
A/k.

Proof. Ad 1: First of all note that, as A is commutative, b1 = 0, and hence HH1(A) = A⊗2/ im(b2). We
define

ϕ : A⊗2 −→ Ω1
A/k, a⊗ b (−→ a db.

Since ϕ(b2(a⊗ b⊗ c)) = 0, thanks to the relation put on Ω1
A/k, we obtain

ϕ : HH1(A) −→ Ω1
A/k.

Conversely, defining ψ(a db) ··= [a⊗ b] ∈ HH1(A) gives rise to a map Ω1
A/k −→ HH1(A), since

ψ(a db+ b da)− ψ(dab) = [a⊗ b− 1⊗ ab+ b⊗ a]

= [b2(1⊗ a⊗ b)].

Clearly, ϕ and ψ are mutually inverse.

Ad 2: Now, as M is symmetric, b1 = 0, and hence H1(A,M) = M ⊗A/ im(b2). We define

ϕ : M ⊗A −→ M ⊗A Ω1
A/k, m⊗ a (−→ m⊗ da.

Since ϕ(b2(m⊗ a1 ⊗ a2)) = 0, thanks to symmetry of M and, again, the relation put on Ω1
A/k, we obtain

ϕ : H1(A,M) −→ M ⊗A Ω1
A/k.

On the other hand, one can verify similarly to the above that defining

ψ : M ⊗A Ω1
A/k −→ H1(A,M), m⊗ a db (−→ [ma⊗ b]

makes sense (respecting the relation put on Ω1
A/k). Clearly these maps are mutually inverse.

2We will see the resulting relation between the 0-th homology groups in (iv) a little later for the homology groups in higher
degree when discussing the so called generalised trace map.
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2.1 Equivalence with Tor-definition. Now we are going to compare the definition of Hochschild
homology given above and the definition in terms of the (derived) Tor-functors. To do so, we note that
for any n, A⊗n has a (left) Ae-module structure given by

(λ⊗ λ′) · a1 ⊗ · · ·⊗ an ··= λa1 ⊗ a2 ⊗ · · ·⊗ an−1 ⊗ anλ
′

The comparison is done by the so-called bar resolution, which is constructed as follows.

Definition 2.6. We define Cbar
n (A) ··= Cn+1(A) = A⊗(n+2), together with

b′n ··=
n!

i=0

(−1)idi,n+1 : C
bar
n (A) −→ Cbar

n−1(A),

with the maps di,n taken from the definition of the Hochschild complex.

As one checks that b′n ◦ b′n+1 = 0, the above definition gives a complex Cbar
· (A) of Ae−modules, called

the bar complex of A.

Proposition 2.7. The complex Cbar
· (A) gives a resolution of the Ae-module A:

Cbar
· (A)

µ−→ A −→ 0,

where µ : A⊗A −→ A is the multiplication map.

Proof. We have to show that the homology groups of the augmented complex vanish. Since A is unital, µ
is surjective, and it is also clear that ker(µ) = im(b′1). Our aim is now to define a contracting homotopy
for Cbar

· (A). As the vanishing of the homology groups has nothing to do with the module structure we
put on it, we consider Cbar

· (A) for a moment as complex of Aop-modules under Aop −→ A⊗Aop, sending
λ (→ 1⊗ λ. We claim that

sn : C
bar
n (A) −→ Cbar

n+1(A)

a0 ⊗ · · ·⊗ an+1 (−→ 1⊗ a0 ⊗ · · ·⊗ an+1

is the saught for contracting homotopy. We start calculating

b′n+1 ◦ sn + sn−1 ◦ b′n =

n+1!

i=0

(−1)idi,n+2 ◦ sn +

n!

j=0

(−1)jsn−1 ◦ di,n+1

= d0,n+2 ◦ sn +

n!

i=0

(−1)i+1di+1,n+2 ◦ sn −
n!

j=0

(−1)j+1sn−1 ◦ di,n+1.

As clearly d0,n+2 ◦ sn = idA⊗(n+2) , computing di+1,n+2 ◦ sn = sn−1 ◦ di,n+1 finishes the proof.

Remark 2.8. In the previous proof we used that A has a left unit. It A has a right unit, we should take
a slightly different sn (putting the 1 on the right).

Proposition 2.9. If A is projective as a k-module, then there is an isomorphism (of groups)

Hn(A,M) ∼= TorA
e

n (M,A).

Proof. Since the k-projectivity of A implies the k-projectivity of A⊗n, it follows from a general fact that
Cbar
n (A) = A⊗A⊗n⊗A is Ae-projective. Indeed, let M be any k-module and N be an Ae-module. Then

it is easily seen that the defining an isomorphism

HomAe(A⊗M ⊗A,N) −→ Homk(M,N)

g (−→ (m (→ g(1⊗m⊗ 1))
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induces a natural isomorphism

HomAe(A⊗M ⊗A,−)
∼

=⇒ Homk(A,−) ◦ F,

where F is a forgetful functor. Now, putting M = A⊗n: As Homk(A
⊗n,−) is exact by assumption (and

F clearly is, too), this gives that A⊗A⊗n ⊗A is Ae-projective. Therefore, the augmented complex

Cbar
· (A) −→ A −→ 0

is a projective resolution of A as an Ae-module. Applying M ⊗Ae − yields

. . . !!M ⊗Ae A⊗(n+2) id⊗b′n !!M ⊗Ae A⊗(n+1)
id⊗b′n−1 !! . . . !!M ⊗Ae A !! 0,

which is used to compute TorA
e

n (M,A). Under the isomorphism given by

M ⊗Ae A⊗(n+2) −→ M ⊗A⊗n

m⊗ a0 ⊗ · · ·⊗ an+1 (−→ a0man+1 ⊗ a1 ⊗ · · ·⊗ an,

one computes that the maps id⊗b′n correspond to bn, finishing the proof.

Normalised Hochschild Complex. The Hochschild complex contains a large subcomplex which is
acyclic and at some point it might be helpful to get rid of it. To do so, let Dn be the submodule
of Cn(A,M) generated by the so-called degenerate elements :

m⊗ a1 ⊗ · · ·⊗ an with ai = 1 for some i.

Definition 2.10. We define C̄·(A,M) ··= Cn(A,M)/Dn and call the resulting complex (together with
the induced boundary maps) normalised Hochschild complex.

One can show that D· forms an acyclic complex and that C·(A,M) is quasi-isomorphic to C̄·(A,M)
(see [Lod98, 1.1.15])

2.2 Trace Maps and Morita Invariance. Now we want to extend the trace map for matrices to
the Hochschild complex. As we will see, this generalised trace map induces an isomorphism on the level
of homology. This is established by a theorem called Morita Invariance for Matrices, allowing us to
compute Hochschild homology of matrix algebras.

Definition 2.11. The n-th generalised trace map is defined to be

trn : Cn(Mr(A),Mr(M)) −→ Cn(A,M)

α(0) ⊗ α(1) ⊗ · · ·⊗ α(n) (−→
!

(ℓ0,...,ℓn)

α
(0)
ℓ0,ℓ1

⊗ α
(1)
ℓ1,ℓ2

⊗ · · ·⊗ α
(n)
ℓn,ℓ0

,

where the sum runs through the set {1, . . . , r}n+1.

Identifying Mr(M) (resp. Mr(A)) with Mr(k)⊗M (resp. Mr(k)⊗A), every element of Mr(M) (resp.
Mr(A)) is a sum of elements of the form ua with u ∈ Mr(k) and a ∈ M (resp. a ∈ A).

Lemma 2.12 ([Lod98, 1.2.2]). Let ui ∈ Mr(k), a0 ∈ M , aj ∈ A, i ≥ 0, j ≥ 1. Then

tr(u0a0 ⊗ · · ·⊗ unan) = tr(u0 · · ·un)a0 ⊗ · · ·⊗ an.

This helps us verifying the following
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Proposition 2.13. The generalised trace maps induce a morphism of the associated Hochschild complexes

C·(Mr(A),Mr(M)) −→ C·(A,M).

Proof. As mentioned earlier, we are reduced to check things on the presimplicial level, meaning that for
any n,

di,n ◦ trn = trn−1 ◦dMi,n for any i.

This in turn is to be checked only on elements of the form u0a0 ⊗ · · ·⊗ unan as in the above lemma. We
compute

di,n(trn(u0a0 ⊗ · · ·⊗ an)) = tr(u0 · · ·un)di,n(a0 ⊗ · · ·⊗ an)

=

"
tr(u0 · · ·un)a0 ⊗ · · ·⊗ aiai+1 ⊗ · · ·⊗ an if 0 ≤ i ≤ n− 1

tr(u0 · · ·un)ana0 ⊗ a1 ⊗ · · ·⊗ an−1 if i = n,

while on the other hand

trn−1(d
M
i,n(u0a0 ⊗ · · ·⊗ unan)) =

"
trn−1(u0a0 ⊗ · · ·⊗ uiaiui+1ai+1 ⊗ · · ·⊗ unan) if 0 ≤ i ≤ n− 1

trn−1(unanu0a0 ⊗ u1a1 ⊗ · · ·⊗ un−1an−1) if i = n

=

"
tr(u0 · · ·un)a0 ⊗ · · ·⊗ aiai+1 ⊗ an if 0 ≤ i ≤ n− 1

tr(unu0 · · ·un−1)ana0 ⊗ a1 ⊗ · · ·⊗ an−1 if i = n,

finishing the proof.

The next theorem builds a bridge between the Hochschild homologies of the matrix algebras and the
Hochschild homologies of the underlying algebra. For this we introduce the n-th inclusion map to be
given by

incn : Cn(A,M) −→ Cn(Mr(A),Mr(M))

m⊗ a1 ⊗ · · ·⊗ an (−→ E1,1(m)⊗ E1,1(a1)⊗ · · ·⊗ E1,1(an).

It is easily seen that this induces a morphism of the corresponding Hochschild complexes.

Theorem 2.14 (Morita Invariance3 for Matrices). The induced morphisms on Hochschild homology

tr∗,n : Hn(Mr(A),Mr(M)) −→ Hn(A,M)

and

inc∗,n : Hn(A,M) −→ Hn(Mr(A),Mr(M))

are mutually inverse isomorphisms.

Proof. Clearly tr· ◦ inc· = idC·(A,M) and hence

tr∗,n ◦ inc∗,n = (tr· ◦ inc·)∗,n = idHn(A,M) .

To complete the proof, it is now sufficient to construct a homotopy

inc· ◦ tr· ∼ idC·(Mr(A),Mr(M)) .

3Why Morita Invariance? There is a general framework for a notion called Morita Equivalence (named after the Japanese
mathematician Kiiti Morita), constituting a relationship between rings that preserves many ring-theoretic properties.
But we will not get into this at this point.
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This in turn will be done by constructing a presimplicial homotopy h·,· between the maps of interest.
Given n, for any i ∈ {0, . . . , n} we define

hi,n : Cn(Mr(A),Mr(M)) −→ Cn(Mr(A),Mr(M))

by sending α(0) ⊗ · · ·⊗ α(n) to
!

(ℓ0,...,ℓi+1)

Eℓ0,1(α
(0)
ℓ0,ℓ1

)⊗ E1,1(α
(1)
ℓ1,ℓ2

)⊗ · · ·⊗ E1,1(α
(i)
ℓi,ℓi+1

)⊗ E1,ℓi+1
(1)⊗ α(i+1) ⊗ · · ·⊗ α(n),

where the sum runs through the set {1, . . . , r}i+2. Now there are some calculations to do. We will not
present every computation here. Just to illustrate what is going on, we will verify (1) for i = 0, j = 1,
and (4) and (5). On the one hand,

dM0,n+1(h1,n(α
(0) ⊗ · · ·⊗ α(n))) = dM0,n+1

# !

(ℓ0,ℓ1,ℓ2)

Eℓ0,ℓ1(α
(0)
ℓ0,ℓ1

)⊗ E1,1(α
(1)
ℓ1,ℓ2

)⊗ E1,ℓ2(1)⊗ α(2) ⊗ · · ·⊗ α(n)
$

=
!

(ℓ0,ℓ1,ℓ2)

Eℓ0,1(α
(0)
ℓ0,ℓ1

α
(1)
ℓ1,ℓ2

)⊗ E1,ℓ2(1)⊗ α(2) ⊗ · · ·⊗ α(n),

while on the other hand,

h0,n−1(d
M
0,n(α

(0) ⊗ · · ·⊗ α(n))) =
!

(ℓ0,ℓ1)

Eℓ0,1((α
(0)α(1))ℓ0,ℓ1)⊗ E1,ℓ1(1)⊗ α(2) ⊗ · · ·⊗ α(n)

=
!

(ℓ0,ℓ1)

!

ℓ

Eℓ0,1(α
(0)
ℓ0,ℓ

α
(1)
ℓ,ℓ1

)⊗ E1,ℓ1(1)⊗ α(2) ⊗ · · ·⊗ α(n).

Ad (4):

dM0,n+1(h0,n(α
(0) ⊗ · · ·⊗ α(n))) =

!

(ℓ0,ℓ1)

dM0,n+1(Eℓ0,1(α
(0)
ℓ0,ℓ1

)⊗ E1,ℓ1(1)⊗ α(1) ⊗ · · ·⊗ α(n))

=
!

(ℓ0,ℓ1)

Eℓ0,1(α
(0)
ℓ0,ℓ1

)E1,ℓ1(1)⊗ α(1) ⊗ · · ·⊗ α(n)

=
!

(ℓ0,ℓ1)

Eℓ0,ℓ1(α
(0)
ℓ0,ℓ1

)⊗ α(1) ⊗ · · ·⊗ α(n)

= α(0) ⊗ α(1) ⊗ · · ·⊗ α(n).

Ad (5):

dMn+1,n+1(hn,n(α
(0) ⊗ · · ·⊗ α(n)))

=
!

(ℓ0,...,ℓn+1)

dMn+1,n+1(Eℓ0,1(α
(0)
ℓ0,ℓ1

)⊗ E1,1(α
(1)
ℓ1,ℓ2

)⊗ · · ·⊗ E1,1(α
(n)
ℓn,ℓn+1

)⊗ E1,ℓn+1(1))

=
!

(ℓ0,...,ℓn+1)

E1,ℓn+1(1)Eℓ0,1(α
(0)
ℓ0,ℓ1

)⊗ E1,1(α
(1)
ℓ1,ℓ2

)⊗ · · ·⊗ E1,1(α
(n)
ℓn,ℓn+1

)

=
!

(ℓ0,...,ℓn+1):
ℓ0=ℓn+1

E1,1(α
(0)
ℓ0,ℓ1

)⊗ E1,1(α
(1)
ℓ1,ℓ2

)⊗ · · ·⊗ E1,1(α
(n)
ℓn,ℓn+1

)

=
!

(ℓ0,...,ℓn)

E1,1(α
(0)
ℓ0,ℓ1

)⊗ E1,1(α
(1)
ℓ1,ℓ2

)⊗ · · ·⊗ E1,1(α
(n)
ℓn,ℓ0

)

= incn
# !

(ℓ0,...,ℓn)

α
(0)
ℓ0,ℓ1

⊗ α
(1)
ℓ1,ℓ2

⊗ · · ·⊗ α
(n)
ℓn,ℓ0

$

= incn(trn(α
(0) ⊗ · · ·⊗ α(n))).
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This finishes what we wanted to show.

Taking M = A, this gives an isomorphism of the Hochschild homologies

HHn(Mr(A)) ∼= HHn(A).

Remark 2.15. One can show that HHn commutes with inductive limits, so that even

HHn(M∞(A)) ∼= HHn(A).

Here, M∞(A) ··= limr Mr(A), where we embed Mr(A) ↩→ Mr+1(A) by bordering the matrix with zeros
from the right and below.

2.3 The Antisymmetrisation Map. Now we want to introduce a map that might show up again
when studying the relation between differential forms and cyclic homology.

Given a0 ⊗ · · ·⊗ an ∈ Cn(A,M) and σ ∈ Sn, we define

σ · a0 ⊗ · · ·⊗ an ··= a0 ⊗ aσ−1(1) ⊗ · · ·⊗ aσ−1(n)

and extend this action by k-linearity to the algebra k[Sn].

Definition 2.16. We define the antisymmetrisation element to be

εn ··=
!

σ∈Sn

sgn(σ)σ ∈ k[Sn].

The induced map, which we still denote εn, given by

εn : M ⊗
n%
A −→ Cn(A,M)

a0 ⊗ a1 ∧ · · · ∧ an (−→ εn · a0 ⊗ · · ·⊗ an,

is called the antisymmetrisation map.

Remark 2.17. Of course, one should observe that the above is well-defined by showing that if ai = aj for
some 1 ≤ i < j ≤ n, then

εn · a0 ⊗ · · ·⊗ an =
!

σ∈Sn

sgn(σ)a0 ⊗ aσ−1(1) ⊗ · · ·⊗ aσ−1(n) = 0.

The antisymmetrisation maps are related to the Hochschild complex by the following commutative
diagram ([Lod98, 1.3.5])

M ⊗
&nA

εn !!

δn
""

Cn(A,M)

bn
""

M ⊗
&n−1A

εn−1 !! Cn−1(A,M).

(2.1)

Here, δn is the Chevalley-Eilenberg map, defined by sending a0 ⊗ · · ·⊗ an ∈ Cn(A,M) to
n!

i=1

(−1)i[a0, ai]⊗ a1 ∧ · · · ∧ 'ai ∧ · · · ∧ an

+
!

1≤i<j≤n

(−1)ia0 ⊗ [ai, aj ] ∧ a1 ∧ · · · ∧ 'ai ∧ · · · ∧ 'aj ∧ · · · ∧ an,

where [a, b] ··= ab− ba. In particular, if A is commutative and M is symmetric, then bn ◦ εn = 0.

Coming to an end, we state two propositions, in which we assume A to be commutative.
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Proposition 2.18 ([Lod98, 1.3.12 and 1.3.15]). 1. The antisymmetrisation map induces a canonical
map, still denoted by the same symbol,

εn : M ⊗A Ωn
A/k −→ Hn(A,M).

2. The canonical map

Cn(A,M) −→ M ⊗A Ωn
A/k

a0 ⊗ · · ·⊗ an (−→ a0 ⊗ da1 ∧ · · · ∧ dan

induces a map

πn : Hn(A,M) −→ M ⊗A Ωn
A/k.

In particular, for M = A, we have induced maps εn : Ω
n
A/k −→ HHn(A) and πn : HHn(A) −→ Ωn

A/k.

As one might guess, the last statement we are going to mention describes the relation between the
induced maps πn and εn.

Proposition 2.19 ([Lod98, 1.3.16]). The composition πn ◦εn acts as multiplication by n! on M⊗AΩn
A/k.

Therefore, if k contains Q, then M ⊗A Ωn
A/k is a direct summand of Hn(A,M).
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