Lecture 8: Introduction to Spectra.

Gürkan Dogan.

11th December 2019.

Contents

1	Stable Homotopy theory.	1
2	The Category of Spectra.	2
3	Cohomology.	3

1 Stable Homotopy theory.

(all spaces are pointed).

Definition 1.0.1. For a topological space (X, x_0) , its (reduced)**suspension** ΣX is defined as

$$\Sigma X = SX/\{x_0\} \times I$$

Here

$$SX = \frac{X \times I}{X \times \{0, .1\}}$$

Remark 1.0.1. One can see that $\Sigma X = S^1 \wedge X = S^1 \times X/S^1 \vee X$. So we see that. $\Sigma S^n = S^1 \wedge S^n = S^{n+1}$ for all $n \ge 0$.

Definition 1.0.2. The **loopspace** ΩX of a space X is the spaces of based loops in X

Lemma 1.0.1. There is an adjunction

$$[\Sigma X, Y] = [X, \Omega Y]$$

where [-,-] means the homotopy class of maps. Roughly, the map is given by

$$(f:\Sigma X\to Y)\mapsto (x\to f|_{\{x\}\times[0,1]})$$

Note that the suspension Σ gives rise to maps

$$\sigma: \pi_n X \to \pi_{n+1} \Sigma X$$

given by

$$[f:S^n \to X] \to [\Sigma f:S^{n+1} \to \Sigma X]$$

This is a well defined homomorphism.

Theorem 1.0.1. (Freuderthal) Let X be a pointed CW complex Fix a positive integer n. Then $\forall i \geq n+2$, $\pi_{n+i}(\Sigma^i X)$ are all isomorphic.

Definition 1.0.3. The stable limit in the above theorem is called the **nth stable homotopy group** of X and is denoted by $\pi_n^s(X)$, i.e

$$\pi_n^s(X) = \varinjlim_i \pi_{n+i}(\Sigma^i X).$$

Remark 1.0.2. By Serre, $\pi_n^s(S^0)$ is finite for all $n \ge 0$. But in general it is very hard to compute.

2 The Category of Spectra.

Definition 2.0.1. A CW spectrum (simply spectrum) is a sequence $\{E_n\}_{n\in\mathbb{Z}}$ of CW complexes together with structure maps $\Sigma E_n \to E_{n+1}$ (which maybe. inclusions as subcomplexes).

Example 2.0.1. 1. The suspension spectrum $\Sigma^{\infty}X$ of a CW complex X is defined by

$$(\Sigma^{\infty}X)_n = \Sigma^n X$$

- 2. The sphere spectrum S is the suspension spectrum of S^0 .
- 3. An Ω spectrum is a sequence of CW complexes E_n with a weak homotopy equivalencs $E_n \to \Omega E_{n+1}$. By adjunction, every Ω spectrum defines a spectrum.
- 4. (Eilenberg-Maclane spaces) Fix an integer n > 0 and a group F. An Eilenberg-Maclane space is a space K(G, n) with

$$\pi_i(K(G, n)) = \begin{cases} G & i = n \\ 0 & \text{otherwise} \end{cases}$$

The most important property of Eilenberg Maclane-spaces is that they "represent" cohomology in the sense that :

$$H^n(X;G)\cong [X,K(G,n)]$$

So we see that, $\pi_n(\Omega(K(G, n+1)) = [S^n, OmegK(G, n+1)] = \pi_{n+1}(K(G, n+1)) = G$. Hence we must have a weak homotopy equivalence. This turns out that the collection of Eilenberg-Maclane spaces for a given group G into a spectrum HG where $HG_n = K(G, n)$.

Definition 2.0.2. A function f of degree r between spectra E and F is a collection of maps $f_n : E_n \to F_{n-r}$ commuting with structure maps :

$$\Sigma E_{n} \xrightarrow{\Sigma f_{n}} \Sigma F_{n-r}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{n+1} \xrightarrow{f_{n+1}} F_{n-r+1}$$

Definition 2.0.3. A subspectrum $E' \subset E$ is **cofinal**. when every cell in E_m is eventually mapped to a cell in some E'_{m+N} .

Definition 2.0.4. Let E, F be spectra and U, V be two cofinal subspectra of E. Let $f: U \to F$ and $g: V \to f$ be two functors of spectra. Then f and g are equivalent if they. agree on the cofinal subspectrum $U \cap V$. Then f and g are equivalent if they agree on the cofinal subspectrum $U \cap V$. A **map** from E to F is an equivalence class of such functions.

Definition 2.0.5. Let I^+ be the unit interval with disjoint basepoint added. Let E be a spectrum. The cylinder spectrum Cyl(E) of E has $(\text{Cyl}(E))_n = i^+ \wedge E_n$ and structure maps given by

$$\Sigma(I^+ \wedge E)_n = I^+ \wedge \Sigma E_n \longrightarrow I^+ \wedge E_{n+1}$$

Definition 2.0.6. We say two maps f, $g: E \to F$ are **homotopic** if there is a map $Cyl(E) \to F$ restricting to f and g at the ends of the cylinder. Homotopy equivalence is an equivalence relation and a morphism of spectra is a homotopy class of maps.

Definition 2.0.7. With this definition, the collection of spectra becomes a homotopy category, called the "stable homotopy category" and it is denoted by Spe.

Remark 2.0.1. 1. (Spe, \wedge) is a symmetric monoidal category and its unit object is the sphere spectrum \mathbb{S} i.e $E \wedge \mathbb{S} = E$.

Definition 2.0.8. The homotopy groups of a spectrum E is defined to be $\pi_n(E) := [\Sigma^n S, E]_0 = [S, E]_n$.

Proposition 2.0.1. *If* E *is a spectrum, then* $\pi_n(E) = \varinjlim_k \pi_{n+k}(E_k)$.

Corollary 2.0.1. $\pi_n(\Sigma^{\infty}X) = \pi_n^s(X)$.

3 Cohomology.

If *E* is a spectrum and *X* a CW complex, then $X \wedge E$ is the spectrum with $(X \wedge E)_n = X \wedge E_n$ with obvious structure maps.

Definition 3.0.1. Let *E* be a spectrum. Define the *E*-cohomology of a CW complex *X* to be $E^nX := [\sum^{\infty} X, E]_{-n}$.

Theorem 3.0.1 (Brown Representability.). Every generalised cohomology theory on a connected CW complex is an E-cohomology for some spectrum E.

Example 3.0.1. 1. The Ω spectrum HA gives HAⁿ $x = [\Sigma^{\infty} X, HA]_{-n} = [\Sigma^{-n} \Sigma^{\infty} x, HA]_{0} = [X, K(A, n)] = H^{n}(X, A).$

2. The complex K-theory. We know that $K^0(X)$ is represented by $BU \times \mathbb{Z}$ where BU:classifying space of the unitary group U. This means $K^0(X) = [X, BU \times \mathbb{Z}]$. in this way, we see that $K^{-1}(X) = [X, \Omega(BU \times \mathbb{Z})]$.

Theorem 3.0.2 (Bott Complex Periodicity). $\Omega^2(BU \times \mathbb{Z}) = BU \times \mathbb{Z}$.

We get that complex K-theory is 2-periodic.