Divided Powers: II

Xucheng ZHANG

University of Duisburg-Essen

November 12, 2020

Outline

1 Local version: P.D. algebras

② Global version: sheafification of P.D. algebras

P.D. envelope

We start with the "P.D. envelope" of an ideal, which is the P.D. analogues of formlal completion.

Theorem (Existence & Universal property of P.D. envelope)

Given

- (A, I, γ) : a P.D. ring.
- B: an A-algebra (via $f: A \rightarrow B$).
- $J \subset B$: an ideal.

There exists a B-P.D. algebra $(\mathcal{D}_{B,\gamma}(J), \bar{J}, [\])$ (via $\psi: B \to \mathcal{D}_{B,\gamma}(J)$) such that

- $J\mathcal{D}_{B,\gamma}(J) \subset \bar{J}$.
- [] compatible with γ (via $\psi \circ f$).

satisfies the following universal property:

Theorem (Existence & Universal property of P.D. envelope)

For any B-P.D. algebra (C,K,δ) (via $\psi':B\to C$) satisfying

- $JC \subset K$.
- δ compatible with γ (via $\psi' \circ f$).

There exists a unique P.D. morphism $(\mathcal{D}_{B,\gamma}(J), \bar{J}, [\]) \to (C, K, \delta)$ making the following diagram commute

$$(\mathcal{D}_{B,\gamma}(J), \bar{J}, [\])$$

$$\psi \qquad \qquad \qquad \downarrow$$

$$(B,J) \xrightarrow{\psi'} (C,K,\delta)$$

$$f \qquad \qquad \qquad \downarrow$$

$$(A,I,\gamma)$$

This B-P.D. algebra $(\mathcal{D}_{B,\gamma}(J), \bar{J}, [\])$ is called the P-D. envelope of J in B relative to (A, I, γ) .

Existence

Assume $IB \subset J$. In this case, both $\psi \circ f$ and $\psi' \circ f$ are P.D. morphism. The natural candidate for $(\mathcal{D}_{B,\gamma}(J), \bar{J}, [\])$ is the Roby's algebra

$$(\Gamma_B(J),\Gamma_B^+(J),[\]) \text{ plus } \psi:J\to \Gamma_B^1(J)\cong J\subset \Gamma_B(J)$$

But there may be two problems:

• Is $J\Gamma_B(J)\subset \Gamma_B^+(J)$, i.e.

Is
$$\underbrace{\psi(x)}_{\text{deg}=1} - \underbrace{x}_{\text{deg}=0} = 0$$
 for $x \in J$?

Let $\mathscr{J}_1 \subset \Gamma_B(J)$ be the ideal generated by elements of this form.

2 Is $[\]$ compatible with γ (via $\psi \circ f$), i.e.

Is
$$\psi(f(y))^{[n]} - \psi(f(\gamma_n(y))) = 0$$
 for any $y \in I$?

Let $\mathscr{J}_2\subset \Gamma_B(J)$ be the ideal generated by elements of this form.

Existence cont

Let $\mathscr{J}:=\mathscr{J}_1+\mathscr{J}_2$ and define

$$(\mathcal{D}_{B,\gamma}(J), \bar{J}, [\]) := (\Gamma_B(J)/\mathscr{J}, \Gamma_B^+(J)/\mathscr{J}, [\])$$

This will solve these two problems. BUT! It brings a new problem:

Is
$$(\Gamma_B(J)/\mathscr{J}, \Gamma_B^+(J)/\mathscr{J}, [\])$$
 a B -P.D. algebra?

Note: this is a quotient ring of a P.D. ring. By Lemma (P.D. structure on a quotient ring), need to check

$$\mathscr{J}\cap\Gamma_B^+(J)\subset\Gamma_B^+(J)$$
 is a sub-P.D. ideal

Since $\mathscr{J}_2\subset \Gamma_B^+(J)$, we have $\mathscr{J}\cap \Gamma_B^+(J)=\mathscr{J}_1\cap \Gamma_B^+(J)+\mathscr{J}_2$. Using the formula $\gamma_n(x+y)$, it suffices to show

$$x^{[n]} \in \mathscr{J} \cap \Gamma_B^+(J) \text{ if } x \in \mathscr{J}_1 \cap \Gamma_B^+(J) \text{ or } x \in \mathscr{J}_2$$

Existence cont.

If $x \in \mathscr{J}_1 \cap \Gamma_B^+(J)$, say

$$x = \sum a_i (\underbrace{\psi(x_i)}_{\deg=1} - \underbrace{x_i}_{\deg=0}) \text{ with } a_i \in \Gamma_B(J)$$

Since $x\in\Gamma_B^+(J)$, the degree 0 part of this sum vanishes. Write $a_i=a_i^0+a_i^+$ with $a_i^0\in\Gamma_B^0(J)=B$ and $a_i^+\in\Gamma_B^+(J)$, then

$$\sum a_i^0 x_i = 0$$
 and hence $0 = \psi \left(\sum a_i^0 x_i \right) = \sum a_i^0 \psi(x_i)$

i.e. $\sum a_i^0(\psi(x_i) - x_i) = 0$. Then

$$x = \sum a_i^+(\psi(x_i) - x_i) \in \mathscr{J}_1\Gamma_B^+(J)$$

This shows $\mathscr{J}_1\cap\Gamma_B^+(J)=\mathscr{J}_1\Gamma_B^+(J)$ and it is easily seen to be a sub-P.D. ideal of $\Gamma_B^+(J)$. Then $x^{[n]}\in\mathscr{J}_1\cap\Gamma_B^+(J)\subset\mathscr{J}\cap\Gamma_B^+(J)$.

Existence cont.

If $x \in \mathscr{J}_2$, by Lemma (being a sub-P.D. ideal can be checked on a generating set), it suffices to see

$$\left(\psi(f(y))^{[n]} - \psi(f(\gamma_n(y)))\right)^{[m]} \in \mathscr{J} \cap \Gamma_B^+(J) \text{ for } y \in I \text{ and } m \geq 1$$

Clearly, it is in $\Gamma_B^+(J)$. It's remaining to show it is in \mathscr{J} (to simplify, write $x^{[n]}$ for $\psi(x)^{[n]}$): LONG computation involved!

Existence cont.

$$\left(f(y)^{[n]} - f(\gamma_n(y))^{[1]} \right)^{[m]} = \sum_{r+s=m} (-1)^s (f(y)^{[n]})^{[r]} (f(\gamma_n(y))^{[1]})^{[s]}$$
(A2)
$$= \sum_{r+s=m} (-1)^s C_{r,n} f(y)^{[nr]} f(\gamma_n(y))^{[s]}$$
(A5)
$$\equiv \sum_{r+s=m} (-1)^s C_{r,n} f(\gamma_{nr}(y)) f(\gamma_s(y) \gamma_n(y))$$

$$\equiv f \left(\sum_{r+s=m} (-1)^s \gamma_r (\gamma_n(y)) \gamma_s (\gamma_n(y)) \right)$$
(A5)
$$\equiv f \left((\gamma_n(y) - \gamma_n(y))^{[m]} \right)$$
(A2)
$$\equiv 0$$
(mod \mathscr{J})

Universal property

Assume $IC \subset K$. In this case, by the universal property of $(\Gamma_B(J), \Gamma_B^+(J), [\])$, there is a P.D. morphism

$$(\Gamma_B(J), \Gamma_B^+(J), [\]) \to (C, K, \delta)$$

Then check it factors through $(\Gamma_B(J)/\mathcal{J}, \Gamma_B^+(J)/\mathcal{J}, [\])$.

Proof: General case

 \bullet (Existence) Apply Special case to $f:(A,I,\gamma)\to (B,J+IB),$ we obtain a B-P.D. algebra

$$(\mathcal{D}_{B,\gamma}(J+IB), \overline{J+IB}, [])$$

and let $\bar{J}\subset \overline{J+IB}$ be the sub-P.D. ideal generated by J. Then

$$(\mathcal{D}_{B,\gamma}(J+IB),\bar{J},[])$$

is what we want.

• (Universal property) Apply Special case to

$$(A, I, \gamma) \xrightarrow{f} (B, J + IB) \xrightarrow{\psi'} (C, K + IC, \delta')$$

we obtain a P.D. morphism

$$(\mathcal{D}_{B,\gamma}(J+IB), \bar{J}, [\]) \to (C, K+IC, \delta')$$

but $\bar{J}C$ (the sub-P.D. ideal generated by JC) is already in K.

P.D. envelope

Representability reformulation

Theorem (Existence & Universal property of P.D. envelope)

Given

- (A, I, γ) : a P.D. ring.
- B: an A-algebra (via $f: A \rightarrow B$).
- $J \subset B$: an ideal.

Then the functor $F: \mathcal{PD} \to \mathcal{S}et$ defined by

$$(C,K,\delta) \mapsto \left\{ \psi' \middle| \begin{aligned} \psi' : (B,J) \to (C,K) \text{ an A-alg morp with $JC \subset K$ s.t.} \\ \psi' \circ f : (A,I,\gamma) \to (C,K,\delta) \text{ is a morp of P.D. rings} \end{aligned} \right\}$$

is representable, where \mathcal{PD} is the category of $B ext{-P.D.}$ algebras.

One by-product

Lemma (Criteria for extension of P.D. structure)

The followings are equivariant:

- A P.D. structure on IB compatible with γ .
- A section of the canonical map $B \to \mathcal{D}_{B,\gamma}(IB)$ such that if K is its kernel, then $K \cap \overline{IB} \subset \overline{IB}$ is a sub-P.D. ideal.

Proof.

Exercise for universal property.

One example

If M is an A-mod, $B:=\operatorname{Sym}_A^{\bullet}(M)$, $J:=\operatorname{Sym}_A^+(M)$, then

$$\mathcal{D}_{B,0}(J) = \Gamma_A(M)$$

where 0 means the trivial P.D. structure on $(0)\subset A$. In particular, if M is a free A-mod with basis $\{x_1,\ldots,x_n\}$, then $B=A[x_1,\ldots,x_n]$ and $J=(x_1,\ldots,x_n)$, then

$$\mathcal{D}_{B,0}(J) = A\langle x_1, \dots, x_n \rangle$$

is the P.D. polynomial algebra.

- (1) $\mathcal{D}_{B,\gamma}(J)$ only depends on J+IB, while \bar{J} still depends on J.
 - \square By the very construction of $\mathcal{D}_{B,\gamma}(J)$.
- (2) If the structure map $A \to B$ factors through some A' and γ extends to γ' on A', then

$$\mathcal{D}_{B,\gamma}(J) = \mathcal{D}_{B,\gamma'}(J)$$

- \square By the very construction of $\mathcal{D}_{B,\gamma}(J)$, the base ring A only play a role in \mathscr{I}_2 , where there is obviously no difference between choosing those y from I or IA'.
- (3) As a B-algebra, $\mathcal{D}_{B,\gamma}(J)$ is generated by $\{x^{[n]}: n \geq 0, x \in J\}$,
 - \square This was already true for $\Gamma_B(J)$.

Any set of generators of J gives a set of P.D. generators of J.

□ This is trivial.

- (4) The canonical map $B/J \to \mathcal{D}_{B,\gamma}(J)/\bar{J}$ is an isomorphism iff γ extends to B/J, e.g. if I is principal or $IB \subset J$. $\square \Rightarrow$ Trivial. \Leftarrow By the universal property of $(\mathcal{D}_{B,\gamma}(J), \bar{J}, \lceil \rceil)$.
- (5) If γ extends to B/J and $B\to B/J$ has a section, then $\mathcal{D}_{B,\gamma}(J)=\mathcal{D}_{B,0}(J)$, i.e. we can drop the compatibility condition.
 - \square The idea is to construct an inverse to the canonical surjective map $\mathcal{D}_{B,0}(J) \to \mathcal{D}_{B,\gamma}(J)$ via universal property. To achieve this, we need to construct a (new) B-P.D. algebra structure on $\mathcal{D}_{B,0}(J)$ which is compatible with γ .

Indeed, denote by $\bar{\gamma}$ the extension of γ to B/J. The section $B/J \to B \to \mathcal{D}_{B,0}(J)$ of $\mathcal{D}_{B,0}(J) \to \mathcal{D}_{B,0}(J)/\bar{J} = B/J$ splits

$$\mathcal{D}_{B,0}(J) = B/J \oplus \bar{J}$$

Then $\bar{\gamma}$ extends to $\mathcal{D}_{B,0}(J)$ and this is a B-P.D. algebra structure compatible with γ .

(6) If $K \subset B$ is an ideal such that $K\mathcal{D}_{B,\gamma}(J) = 0$, then

$$\mathcal{D}_{B,\gamma}(J) = \mathcal{D}_{B/K,\gamma}(J/J \cap K)$$

☐ Exercise of universal property.

For example, if mB=0 for some integer m and J has $\leq q$ generators, then $J^{(m-1)q+1}\mathcal{D}_{B,\gamma}(J)=0$ and hence

$$\mathcal{D}_{B,\gamma}(J) = \mathcal{D}_{B/J^{(m-1)q+1},\gamma}(J/J^{(m-1)q+1})$$

Geometrically, this means $\mathcal{D}_{B,\gamma}(J)$ only depends on infinitesimal neighborhood of V(J) in $\operatorname{Spec}(B)$.

(7) (Base change) If $(A,I,\gamma) \to (A',I',\gamma')$ is a surjective P.D. morphism and $B':=A'\otimes_A B,\ J':=JB'.$ Then the canonical map

$$A' \otimes_A \mathcal{D}_{B,\gamma}(J) \to \mathcal{D}_{B',\gamma'}(J')$$
 is an isomorphism

 \square By the universal property of $\mathcal{D}_{B',\gamma'}(J')$, it suffices to see the image of \bar{J} in $A'\otimes_A\mathcal{D}_{B,\gamma}(J)$ has a P.D. structure compatible with γ' , or equivalently, the kernel of $\mathcal{D}_{B,\gamma}(J)\to A'\otimes_A\mathcal{D}_{B,\gamma}(J)$ meets \bar{J} in a sub-P.D. ideal. If A'=A/K, then this kernel is $K\mathcal{D}_{B,\gamma}(J)$. To see $K\mathcal{D}_{B,\gamma}(J)\cap \bar{J}\subset \bar{J}$ is a sub-P.D. ideal, we use that $K\subset I$ is a sub-P.D. ideal and $[\]$ compatible with γ . Everything is then clear from Proposition-Definition (compatibility).

Change of algebra

Proposition (Change of algebra)

If B' is a B-algebra, then there is a natural map

$$\mathcal{D}_{B,\gamma}(J)\otimes_B B'\to \mathcal{D}_{B',\gamma}(JB')$$

which is an isomorphism if B' is flat over B.

Proof.

The above map comes from $\mathcal{D}_{B,\gamma}(J) \to \mathcal{D}_{B',\gamma}(JB')$, given by the universal property. If B' is flat over B, then $JB' = J \otimes_B B'$ and so $\Gamma_{B'}(JB') \cong \Gamma_B(J) \otimes_B B'$ is flat over $\Gamma_B(J)$. By definition

$$\mathscr{J}' = \mathscr{J}\Gamma_{B'}(JB') = \mathscr{J} \otimes \Gamma_B(J) \otimes B' \cong \mathscr{J} \otimes B'$$
 \Downarrow

$$\mathcal{D}_{B',\gamma}(JB') = \Gamma_{B'}(JB')/\mathscr{J}' = \Gamma_{B}(J) \otimes B'/\mathscr{J} \otimes B' = \mathcal{D}_{B,\gamma}(J) \otimes_B B'$$

Change of algebra

Corollary (Extension of P.D. structure on flat case)

If B is a flat A-algebra, then γ extends to B.

Proof.

We have a map $\mathcal{D}_{A,\gamma}(I) \to A$ with a P.D. kernel. Tensored with B yields $\mathcal{D}_{A,\gamma}(I)\otimes_A B\to B$. By Proposition, this is $\mathcal{D}_{B,\gamma}(IB)\to B$. Let K be its kernel, then $K \cap \overline{IB} \subset \overline{IB}$ is a sub-P.D. ideal. Then apply Lemma

(Criteria for extension of P.D. structure).

Change of algebra

Corollary ($\mathcal{D}_{B,\gamma}(J)$ as \mathbb{Q} -algebra)

The map $B \to \mathcal{D}_{B,\gamma}(J)$ is an isomorphism mod \mathbb{Z} -torsion.

Proof.

Let $B':=B\otimes_{\mathbb{Z}}\mathbb{Q}$. Then B' is flat over B and $\mathcal{D}_{B',\gamma}(JB')=B'$ (since B' is now a \mathbb{Q} -algebra). By Proposition

$$B \otimes_{\mathbb{Z}} \mathbb{Q} = B' = \mathcal{D}_{B',\gamma}(JB') = \mathcal{D}_{B,\gamma}(J) \otimes_B B' = \mathcal{D}_{B,\gamma}(J) \otimes_{\mathbb{Z}} \mathbb{Q}$$

i.e. the map $B \to \mathcal{D}_{B,\gamma}(J)$ becomes an isomorphism if tensored $\mathbb{Q}.$

P.D. nilpotent

Definition (P.D. nilpotent)

Let (A, I, γ) be a P.D. ring. Then $I^{[n]}$ is the ideal generated by

$$\gamma_{i_1}(x_1)\cdots\gamma_{i_k}(x_k)$$
 for $\sum i_j\geq n$ and $x_j\in I$

and I is called P.D. nilpotent if $I^{[n]} = 0$ for some $n \ge 1$.

Clearly $I^n\subset I^{[n]}$, then P.D. nilpotent \Rightarrow nilpotent, but the converse is not true, e.g. $(2)\subset \mathbb{Z}/2^m\mathbb{Z}$ for some m>1 (recall $x^n=n!\gamma_n(x)$).

Proposition

$$I^{[n]} \subset I$$
 is a sub-P.D. ideal and $I^{[n]}I^{[m]} \subset I^{[n+m]}$.

Proof.

By Lemma (being a sub-P.D. ideal can be checked on a generating set), compute $\gamma_p(\gamma_{i_1}(x_1)\cdots\gamma_{i_k}(x_k))\in I^{[n]}$ for any $p\geq 1$.

Sheaf of P.D. rings

We can speak of a sheaf of P.D. rings on a topological space.

Definition (Sheaf of P.D. rings)

A sheaf of P.D. rings on a topological space X is a triple $(\mathscr{A},\mathscr{I},\gamma)$ where

- \mathscr{A} is a sheaf of rings on X.
- $\mathscr{I} \subset \mathscr{A}$ is a sheaf of ideals on X.
- $\gamma = (\gamma_i : \mathscr{I} \to \mathscr{I})_{i \geq 0}$ is a collection of morphism of sheaves.

such that for any open $U \subset X$, the restriction

$$(\mathscr{A}(U),\mathscr{I}(U),\gamma(U))$$
 is a P.D. ring

Sheaf of P.D. rings

Basic operations

Let $f:X\to Y$ be a continuous map of topological spaces. The following constructions mean the obvious things.

- (Push-forward) If $(\mathscr{A}, \mathscr{I}, \gamma)$ is a sheaf of P.D. rings on X, then $(f_*\mathscr{A}, f_*\mathscr{I}, f_*\gamma)$ is a sheaf of P.D. rings on Y.
- ② (Pull-back) If $(\mathcal{B}, \mathcal{J}, \delta)$ is a sheaf of P.D. rings on Y, then $(f^*\mathcal{B}, f^*\mathcal{J}, f^*\delta)$ is a sheaf of P.D. rings on X.
- and so on...

P.D. ringed space

Definition (P.D. ringed space & P.D. scheme)

- A P.D. ringed space is a pair $(X, (\mathscr{A}, \mathscr{I}, \gamma))$ where X is a topological space and $(\mathscr{A}, \mathscr{I}, \gamma)$ is a sheaf of P.D. rings on X.
- A P.D. scheme is a P.D. ringed space $(X,(\mathscr{A},\mathscr{I},\gamma))$ such that X is a scheme (with Zariski topology) and $\mathscr{A}=\mathcal{O}_X.$

Definition (Morphism of P.D. ringed spaces)

A morphism of P.D. ringed spaces $f:(X,(\mathscr{A},\mathscr{I},\gamma))\to (Y,(\mathscr{B},\mathscr{J},\delta))$ consists of

- lacksquare a continuous map f:X o Y of topological spaces.
- 2 a morphism of sheaves of P.D. rings

$$f^{\#}:(\mathscr{B},\mathscr{J},\delta)\to(f_{*}\mathscr{A},f_{*}\mathscr{I},f_{*}\gamma)$$

In particular, it is a P.D. morphism when restricted to opens.

Building blocks: affine P.D. scheme

Let (A,I,γ) be a P.D. ring. Forgetting the P.D. structure, we get an affine scheme $(\operatorname{Spec}(A),\mathcal{O}_{\operatorname{Spec}(A)})$ + a sheaf of ideals $\mathcal{I}\subset\mathcal{O}_{\operatorname{Spec}(A)}$ defined by $\mathcal{O}_{\operatorname{Spec}(A)}(D(p))=A_p$ and $\mathcal{I}(D(p))=I_p$ for any $p\in A$.

Fact (P.D. structure on localization)

The localization pair (A_p,I_p) has a canonical P.D. structure γ given by

$$\gamma_n(x/p^i) := \gamma_n(x)/p^{in}$$
 for any $x \in A$ and $n \ge 0$

Sheafification of this fact gives a P.D. structure on \mathcal{I} , hence yields a sheaf of P.D. rings $(\mathcal{O}_{\operatorname{Spec}(A)}, \mathcal{I}, \gamma)$ on $\operatorname{Spec}(A)$ which makes it into a P.D. ringed space, sometimes denoted by

$$\operatorname{Spec}(A, I, \gamma)$$

Again, there is a bijection

$$\operatorname{Hom}_{\mathsf{P.D.}}(\operatorname{Spec}(A,I,\gamma),\operatorname{Spec}(B,J,\delta)) = \operatorname{Hom}_{\mathsf{P.D.}}((B,J,\delta) \to (A,I,\gamma))$$

Sheafification of P.D. envelope

In the rest, we fix a base P.D. scheme $(S, (\mathcal{O}_S, \mathcal{I}, \gamma))$.

Proposition (Sheafification of P.D. envelope)

Given

- X: an S-scheme.
- \mathcal{B} : a quasi-coherent sheaf of \mathcal{O}_X -algebras.
- $\mathcal{J} \subset \mathcal{B}$: a quasi-coherent sheaf of ideals.

Then $\mathcal{D}_{\mathcal{B},\gamma}(\mathcal{J})$ is a quasi-coherent sheaf of \mathcal{O}_X -algebras.

In picture, we just replace

$$(A, I, \gamma) \xrightarrow{f} (B, J) \xrightarrow{\psi} (\mathcal{D}_{B, \gamma}(J), \bar{J}, [\])$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\mathcal{O}_{S}, \mathcal{I}, \gamma) \xrightarrow{f} (\mathcal{B}, \mathcal{J}) \xrightarrow{\psi} (\mathcal{D}_{\mathcal{B}, \gamma}(\mathcal{J}), \bar{\mathcal{J}}, [\])$$

P.D. neighbourhood

Definition

Let $i: X \hookrightarrow Y$ be a closed immersion of S-scheme defined by $\mathcal{I}_X \subset \mathcal{O}_Y$. In this case we write

$$\mathcal{D}_{X,\gamma}(Y):=\mathcal{D}_{\mathcal{O}_Y,\gamma}(\mathcal{I}_X)$$
 and $\mathcal{D}^n_{X,\gamma}(Y):=\mathcal{D}_{X,\gamma}(Y)/ar{J}^{[n+1]}$

Because of Proposition, they are quasi-coherent \mathcal{O}_Y -algebras.

Definition (n^{th} -order P.D. neighborhood of X in Y)

The schemes

$$i_n: \mathbf{D}^n_{X,\gamma}(Y) := \underline{\operatorname{Spec}}_Y(\mathcal{D}^n_{X,\gamma}(Y)) \to Y \text{ for } n \geq -1$$

are called the n^{th} -order P.D. neighborhood of X in Y.

Warning: This is not a subscheme of Y!

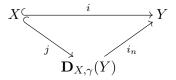
P.D. neighbourhood

Why the name?

In case that γ extends to $\mathcal{O}_Y/\mathcal{I}_X=\mathcal{O}_X$ (i.e. to X), then by Remark 4

$$\mathcal{D}_{X,\gamma}(Y)/\bar{J}=\mathcal{O}_X$$

and $i:X\hookrightarrow Y$ factors through a closed immersion $j:X\hookrightarrow \mathbf{D}_{X,\gamma}(Y)$ as



This somehow explains the name.

P.D. neighbourhood

Local structure

Proposition (Local structure of $\mathcal{D}_{X,\gamma}(Y)$)

If $i: X \hookrightarrow Y$ is a (closed) immersion of smooth S-schemes and $m\mathcal{O}_Y = 0$. Then $\mathcal{D}_{X,\gamma}(Y)$ is locally isomorphic to a P.D. polynomial algebra over \mathcal{O}_X generated by $d:=\operatorname{codim}(X)$ elements.

In fact, we can compute it directly as

$$\begin{split} \mathcal{D}_{X,\gamma}(Y) &:= \mathcal{D}_{\mathcal{O}_Y,\gamma}(\mathcal{I}_X) = \mathcal{D}_{\mathcal{O}_Y/\mathcal{I}_X^N,\gamma}(\mathcal{I}_X/\mathcal{I}_X^N) \text{ (Remark 6)} \\ &= \mathcal{D}_{\mathcal{O}_Y/\mathcal{I}_X^N,0}(\mathcal{I}_X/\mathcal{I}_X^N) \text{ (Remark 5)} \\ &= \mathcal{D}_{\mathcal{O}_X[t_1,\dots,t_d]/\mathcal{I}^N,0}(\mathcal{I}/\mathcal{I}^N) \text{ (X/S smooth)} \\ &= \mathcal{D}_{\mathcal{O}_X[t_1,\dots,t_d],0}(\mathcal{I}) \text{ (explicit)} \\ &= \mathcal{O}_X\langle t_1,\dots,t_d \rangle \end{split}$$

where N:=(m-1)d+1 and $\mathcal{I}:=(t_1,\ldots,t_d)\subset\mathcal{O}_X[t_1,\ldots,t_d].$

Set-up

For many purposes it is convenient to work over a **formal base**: need to know the compatibilities of $\mathcal{D}_{\mathcal{O}_Y,\gamma}(\mathcal{J})$ with inverse limits. Given

- (A, I, γ) : a Noetherian P.D. ring.
- $P \subset I$: a sub-P.D. ideal such that A is P-adically complete

By Corollary (Powers of P.D. ideals), $P^{n+1} \subset I$ is a sub-P.D. ideal and we have a natural P.D. morphism by Lemma (P.D. structure on a quotient ring)

$$(A, I, \gamma) \rightarrow (A_n, I_n, \gamma) := (A/P^{n+1}, IA/P^{n+1}, \gamma)$$

The P.D. structure on I_n induces a P.D. structure on

$$\hat{I} := \lim_{\leftarrow} I_n \subset \lim_{\leftarrow} A_n := \hat{A}$$

and finally yields a P.D. morphism $(A, I, \gamma) \to (\hat{A}, \hat{I}, \gamma) \to (A_n, I_n, \gamma)$. For any formal A-scheme Z, let $Z_n := Z \times_{\operatorname{Spec}(A)} \operatorname{Spec}(A_n)$.

Statement

The following is just a global version of Remark 8.

Proposition (Compatibility of $\mathcal{D}_{\mathcal{O}_Y,\gamma}(\mathcal{J})$ with inverse limit)

Given

- Y: a formal A-scheme with ideal of definition containing $P\mathcal{O}_Y$ such that γ extends to Y.
- $\mathcal{J} \subset \mathcal{O}_Y$: a sheaf of ideals.

Then there are canonical isomorphisms

$$A_n \otimes_A \mathcal{D}_{\mathcal{O}_Y,\gamma}(\mathcal{J}) \xrightarrow{\sim} \mathcal{D}_{\mathcal{O}_{Y_n},\gamma}(\mathcal{J}\mathcal{O}_{Y_n})$$
$$\mathcal{D}_{\mathcal{O}_{Y,\gamma}}(\mathcal{J}) \xrightarrow{\sim} \lim_{\leftarrow} \mathcal{D}_{\mathcal{O}_{Y_n},\gamma}(\mathcal{J}\mathcal{O}_{Y_n})$$

In particular, $\hat{\bar{\mathcal{J}}}$ has a canonical P.D. structure compatible with γ .

Geometric interpretation

The following is just a global version of Remark 7.

Corollary (The invariance of $\widehat{\mathbf{D}_{X,\gamma}(Y)}$ under formal completion)

Given

- Y: a formal A-scheme with ideal of definition containing $P\mathcal{O}_Y$ such that γ extends to Y.
- $X \subset Y$: a formal subscheme.

Assume that P contains a non-zero integer. Then there is a canonical isomorphism

$$\widehat{\mathbf{D}_{X,\gamma}(Y_{/X})} \to \widehat{\mathbf{D}_{X,\gamma}(Y)}$$

where $Y_{/X}$ is the formal completion of Y along X.

Local structure

Corollary (Local structure of $\widehat{\mathbf{D}_{X,\gamma}(Y)}$)

Given

- Y: a formal A-scheme with ideal of definition containing $P\mathcal{O}_Y$ such that γ extends to Y.
- $X \subset Y$: a formal subscheme.

Assume that Y/A and X/A_0 are smooth. Then $\mathbf{D}_{X,\gamma}(Y)$ is locally isomorphic to the P-adic completion of a P.D. polynomial algebra with coefficient in a formally smooth A-algebra.

In particular, if A has no \mathbb{Z} -torsion, then $\widehat{\mathbf{D}}_{X,\gamma}(Y)$ has none.

Thanks!