Lecture 11: THH and TC: Part II.

Ran Azouri.

22nd January, 2020.

Contents

1	Tate Construction.	1
	1.1 Tate diagonal	2
2	Defining CycSp.	3
	Today, we shall at first view THH as a cyclotomic spectra and define the category Cyc	:Sp
an	d the functors TC, TC ⁻ and TP.	-

Recall: In the beginning of the seminar, we saw

$$HC_{\bullet}(A) = H_{\bullet}(HochComplx/(t_n - id)).$$

Also, we have a corresponding fiber sequence :

$$HC[1] \rightarrow HC^- \rightarrow HP$$

At first, we start with Tate construction.

1 Tate Construction.

Tate Cohomology: For a finite group *G* and a *G*-module *M*, we have :

- 1. Group Coh : $R()^G$ (the right derived functor of invariants).
- 2. Group Hom: $L()_G$ (the left derived functor of orbits).

Tate noticed the existence of the map : Nm : $M_G \rightarrow M^G$ defined by

$$\bar{a} \to \sum_{g \in G} ga$$

which allows us to patch these two cohomology theories.

The cohomology groups are

$$\cdots H_1(G, M)$$
, $ker(Nm)$, $coker(Nm)$, $H^1(G, M)$, \cdots

One of the main useful of such a cohomology theory was to establish important results in Class Field theory, such as :

Theorem 1.0.1.

$$\hat{H}^{-2}(G,\mathbb{Z}) \xrightarrow{\bigcup \atop \cong} \hat{H}^{0}(G,L^{*}) \cong K^{*}/N_{L/K}L^{*}$$

where L/K are local fields.

We want to generalize such notions to the category of *G*-spectra.

We have a trivial action functor $f^* : \operatorname{Mod}_{\mathbb{Z}} \to \operatorname{Mod}_{\mathbb{Z}}^G$. This functor has left and right adjoints:

$$\operatorname{\mathsf{Mod}}_{\mathbb{Z}} \xrightarrow{f^*} \operatorname{\mathsf{Mod}}_{\mathcal{Z}}^G$$

where f_* is functor of fixed points and $f_!$ is the functor of orbits.

Definition 1.0.1. For a *G*- spectra *X*, i.e $X : BG = N(G) \rightarrow Sp$, we define:

$$(X)^{hG} = f_*(X) := \lim_{R \to X} X$$

and

$$(X)_{hG} = f_1(X) := \operatorname{colim}_{BG} X$$

We have the following theorem.

Theorem 1.0.2. We have a natural transformation Nm: $()_{hG} \rightarrow ()^{hG}$.

Definition 1.0.2. $()^{tG} := \text{cofib}(\text{Nm}: ()_{hG} \rightarrow ()^{hG}). ()^{tG}$ is the called the Tate spectra.

Remark 1.0.1. Applying the functor $()^{tG}$ to HM for a G-module M, we get the homotopy groups of this spectra to be the tate cohomology groups.

With this functors defined, we can define the following notions:

Definition 1.0.3. For A a ring, we define :

- 1. $TC^{-}(A) := THH(A)^{hT}$.
- 2. $TP(A) := THH(A)^{t\mathbb{T}}$.

Turns out that to define, TC, we need one more tool, i.e the Tate diagonal.

1.1 Tate diagonal

In Sp, it is not obvious to have a diagonal functor:

$$X \to X \otimes X$$

But for all prims p, we have a functor called the **Tate diagonal**, denoted by

$$\Delta_p: X \to (X^{\otimes p})^{tC_p}$$

for each prime p.

Remark 1.1.1. Fact: the functor $T_p : Sp \rightarrow Sp$ is exact where

$$T_p(X) = (X^{\otimes p})^{tC_p}$$

In fact, we have

$$T_p(X \oplus Y) = T_p(X) \oplus T_p(Y) (\oplus = \text{wedge}).$$

We have the following lemma in the category of Sp,

Lemma 1.1.1. Let $F : Sp \to Sp$ be an exact functor, evaluation at S gives us the following equivalence:

$$\operatorname{Map}_{\operatorname{Fun}^{ex}(\operatorname{Sp},\operatorname{Sp})}(\operatorname{id}_{\operatorname{Sp}},F) \xrightarrow{\cong} \operatorname{Hom}_{\operatorname{Sp}}(\operatorname{\mathbb{S}},F(\operatorname{\mathbb{S}})).$$

Definition 1.1.1. The natural transformation $\mathrm{id}_{Sp}\to \mathrm{Tp}$ corresponding to the map $\mathbb{S}\to\mathbb{S}^{hC_p}\to\mathbb{S}^{tC_p}=T_p(\mathbb{S})$ is called the Tate diagonal.

Note: The map only exists in higher algebra.

Remark 1.1.2. Given $A \in Alg_{E_1}(Sp)$, we have the following diagram:

$$\begin{array}{ccc}
A & \xrightarrow{\Delta_p} & (A^{\otimes p})^{tC_p} & \longrightarrow & A^{tC_p} \\
\downarrow & & & \downarrow \\
\text{THH}(A) & \xrightarrow{\varphi_p} & \text{THH}(A)^{tC_p}
\end{array}$$

This gives us the fact that THH(A) is a $\mathbb{T}/C_p \cong \mathbb{T}$ -spectrum.

Definition 1.1.2. A cyclotomic spectrum is a \mathbb{T} -spectrum X equipped with the maps $X \xrightarrow{f_p} X^{tC_p}$ for each prime p which are \mathbb{T} -equivariant.

Example 1.1.1. For $A \in Alg_{E_1}(Sp)$ with φ_p as above gives THH(A) as a cyclotomic spectra.

This gives us the definition of TC.

Definition 1.1.3. For *X* a cyclotomic spectra, we define :

$$TC(X) := Eq(X^{h\mathbb{T}} \xrightarrow{can} (X^{tC_p})^{h\mathbb{T}})$$

2 Defining CycSp.

- 1. $C = Mod_{\mathbb{Z}}$, Hom(1, X) = X.
- 2. $\mathcal{C} = \text{Mod}^G$, $\text{Hom}_{\mathcal{C}}(1, X) = X^G$.
- 3. $\mathcal{C} = \operatorname{Sp}$, $\operatorname{Hom}_{\mathcal{C}}(\mathbb{S}, X) = \Omega^{\infty} X$.

We want to define the category of CycSp, in such a way such that TC is the mapping spectrum motivated from the previous example.

Definition 2.0.1. CycSp is the lax equalizer of $\operatorname{Sp}^{\mathbb{T}} \xrightarrow{\operatorname{id}} \prod_{p} \operatorname{Sp}^{\mathbb{T}}$ In other words, we

define the category CycSp can be defined as the pullback diagram:

$$CycSp \longrightarrow (\prod Sp^{\mathbb{T}})^{\Delta 1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$Sp^{\mathbb{T}} \xrightarrow{\prod_{p} \phi_{p}} \prod_{p} Sp^{\mathbb{T}} \times \prod_{p} Sp^{\mathbb{T}}$$

where $\phi_p = (\mathrm{id}, \prod_p (.)^{tC_p})$.

In this way, we can define $TC(X) = Map_{CycSp}(\mathbb{S}^{triv}, X)$.

Definition 2.0.2. For a ring A, we define TC(A) := TC(THH(A)).

Two main important remarks about such theory:

1. We have a following diagram:

$$K \xrightarrow{\text{Dtr}} \text{THH}$$

$$\downarrow Cyct \qquad \uparrow$$

$$\uparrow TC$$

where Dtr is called the **Dennis trace map** and Cyct is called the **Cyclotomic trace map**.

2. The cyclotomic trace map has a following important consequence given by the following theorem

Theorem 2.0.1 (Dundas-Goodwille-McCarthy). $A \rightarrow B$ a surjective maps of rings with kernel a nilpotent ideal., then the following square is cartesian:

$$K(A) \longrightarrow TC(A)$$

$$\downarrow \qquad \qquad \downarrow$$
 $K(B) \longrightarrow TC(B)$