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1 Introduction.

The goal of the seminar is to understand two cohomology theories : Crystalline and Prismatic
Cohomology. These two cohomology theories are an important tool in the �eld of arithmetic
geometry. The seminar is divided into two parts as the name suggests:

1. Lectures 1− 7 : Crystalline Cohomology.

2. Lectures 8− 12 : Prismatic Cohomology.

Each lecture is of 90 mins. There are some lectures where the speaker may need 15-30 min-
utes extra for completing the talk.

Let us give a brief introduction to both of these theories.
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1.1 Crystalline Cohomology.

"Un cristal posséde deux propriétés caractéristíques:la rigidité, et la faculté de croitre, dans
un voisinage approprié. Il y a des cristaux de toute espéce de substance: des cristaux de

soude, de sou�re, de modules, d'anneaux, de schémas relatifs etc"
- Grothendieck, in a letter to Tate, 1966.

Crystalline Cohomology was invented by Grothendieck in 1966, (as you can see above)
in order to �nd a "good" p-adic cohomology theory. It was worked out by Pierre Berthelot
in his thesis. To give a motivation to this, let us brie�y describe some properties of l-adic
cohomology.
The l-adic cohomology developed by Grothendieck and Artin is a Weil Cohomology theory,
in the sense that it is a contravriant functor H∗ on the category of smooth projective varieties
over k = Fq of characteristic p (l 6= p) to the category of graded algebras over a �eld Ql of
characteristic 0 which satis�es a bunch of properties. Some of the important properties are :

1. Poincare duality.

2. Trace map.

3. Cycle map.

4. Weak and Hard Lefschetz theorem.

Morever, for X a smooth projective scheme over k = Fp which admits a smooth proper lift
X over Zp, we have

H∗(Xk̄,et,Zl) = H∗sing(X an,Z)⊗ Zl

where we �xed an embedding Zp ↪→ C. This is a consequence of Artin's comparison theorem
in SGA IV involving �nite coe�cents and passing to inverse limits. An important fact here
to note is that the comparison map does not kill the l-torsion information of the singular
cohomology .

But what about the case l = p? Turns out that almost none of the above properties hold
for p-adic étale cohomology of varieties in characteristic p. This motivates the development
of crystalline cohomology.

Firstly, Grothendieck introduced the notion of "in�nitesimal sites". In short, for a variety
X over C, he de�nes a site X/Cinf which encodes the data of in�nitesimal liftings. Objects
of X/Cinf are pairs (U, T ) where U ⊂ X is an open subset and U → T is a closed nilpotent
immersion, namely they have the same underlying topological space such that OT → OU is
quotient by a nilpotent ideal. The topology is given by Zariski covering.

A sheaf F on X/Cinf is given by a collection of sheaves FT on each (U, T ) such that for
f : (U, T )→ (U ′, T ′) it induces a morphism f ∗FT ′ → FT . If all such induced morphisms are
isomorphisms, F is said to be a crystal. Thus coming to the quotation above, a crystal is
an object which is "rigid" (i.e all such induced maps are isomorphisms) and it "grows" (i.e
it can be extended along in�nitesimal thickenings).
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Grothendieck, in Crystals and De Rham Cohomology of Schemes, proved that

H∗(X/Cinf ,OX/C) ∼= H∗(X,Ω•X/C).

It is natural to apply such topology in our equicharacteristic situation, but it turns out that
Poincare lemma fails in our setting. The obstruction to such proof yields an idea of how
to resolve the issue. Thus, Grothendieck de�nes the notion of divided power structures and
notion of crystalline site, where the cohomology of the site is called crystalline cohomology.

The seminar shall introduce the notion of divided power structures, the crystalline site
and crystalline cohomology. We can de�ne divided power ideals as follows:

De�nition 1.1 ([1], De�nition 3.1). Let A be a commutative ring, I ⊂ A be an ideal. By
divided powers on I, we mean a collection of maps γi : I → A for all integers i ≥ 0 such that
n!γn(x) = xn for any n ≥ 0 and for all x ∈ I.

A very important example is the following:

Example 1.1. Let k be a �eld of characteristic p. Let W = W (k) be the ring of Witt
vectors. Then the pair (p) ⊂ W has a divided power structure given by γn(x) = xn/n! for
x ∈ (p).

Such notions can be upgraded on the level of schemes and formal schemes. This shall
enable us to de�ne the crystalline site (X/S)cris where S is a P.D scheme and locally nilpotent.
Categorical formalism allows us to de�ne crystalline cohomology. We shall introduce the
de�nition of crystals in the setting of Crystalline site. The main goal of the �rst part of our
seminar is to prove the comparsion theorem between crystalline and de Rham cohomology.

Theorem 1.1 ([2], Corollary 3.8). Let k be a perfect �eld of characteristic p. Let W = W (k)
be the ring of Witt vectors. Let X be a smooth variety over k. Suppose X admits a smooth
proper lifting Z over W , then

H i
cris(X/W ) ∼= H i

dR(Z/W ).

1.2 Prismatic Cohomology.

The second part of the seminar is devoted to the study of prismatic cohomology, de�ned
by Bhatt and Scholze in [5]. To say it in their words: prismatic cohomology is a "uni�ed
construction of various p-adic cohomology theories, including étale, de Rham and crystalline
cohomology...". Just like one obtains light of di�erent colours when sending white light
through a prism, one obtains the already existing p-adic cohomology theories from the pris-
matic one, whence the name, see Terence Tao's blogpost [9].
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Given a ring A together with a ring endomorphism φ on it, which lifts the Frobenius
modulo p, we obtain a set theoretic map δ : A→ A such that φ(a) = ap +pδ(a) for all a ∈ A.
The fact that φ is a ring morphism is encoded in certain identities that δ satis�es. If A is
p-torsionfree, then giving φ is equivalent to giving the map δ; if however A has p-torsion, then
at least any map of sets δ : A→ A satisfying the aforementioned identities yields a Frobenius
lift φ by the above formula. Pairs (A, δ) are called δ-rings.

Example 1.2. Let k be a perfect �eld of characteristic p > 0. Then the Frobenius on k
induces a Frobenius lift on W (k). The kernel of the canonical map W (k) � k is principal,
generated by p. The pair (W (k), (p)) consisting of the p-adically complete δ-ring W (k) and
the ideal (p) is an instance of a crystalline prism.

De�nition 1.2 ([5], De�nition 3.2). A prism is a pair ((A, δ), I) consisting of a δ-ring (A, δ)
(with associated Frobenius φ) and an ideal I ⊂ A, which de�nes a Cartier divisor in Spec(A),
such that

(i)A is (derived) (p, I)-adically complete,

(ii) p ∈ I + φ(I)A, i.e. V (I) and (φ∗)−1(V (I)) meet only in characteristic p.

Example 1.3. The canonical mapW (O[Cp
) � OCp from p-adic Hodge theory de�nes a prism.

Indeed, the kernel is generated by the element ξ = p− [p[], where p[ ∈ O[Cp
:= lim←−x 7→xp OCp

is a compatible system of p-power roots of p. Since φ(ξ)− ξp ∈ p(1 + pW (O[Cp
)), we see that

δ(ξ) is a unit in W (O[Cp
) and thus condition (ii) is satis�ed.

The ring OCp is an example of a perfectoid ring, and the Frobenius on W (O[Cp
) is an

isomorphism, so that the (W (OC[
p
), (ξ)) is an instance of a perfect prism.

We will de�ne perfectoid rings in general and then see the following result:

Theorem 1.2 ([5], Theorem 3.10). Mapping a perfect prism (A, I) to A/I induces an equiv-
alence of categories

(Perfect prisms) ' (Perfectoid rings) .
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The inverse is given by sending a perfectoid ring S to the prism (W (S[), ker(θ)), where
θ : W (S[)→ S is Fontaine's canonical map, which will be recalled in one of the talks.

Going back to the crystalline setting in Example 1.2, given an algebraic variety over k
admitting a smooth lift to W (k), we have the attached crystalline complex RΓcrys(X/W (k)),
computed as the sheaf cohomology of the structure sheaf on the crystalline site (X/W (k))crys.
In a similar fashion, restricting to the a�ne situation, given a prism (A, I) and a smooth
p-complete A/I-algebra R, there is the prismatic site (R/A)� along with a structure sheaf
O�. Our main goal is to explain the comparison result:

Theorem 1.3 ([5], Theorem 5.2). Let (A, (p)) be a crystalline prism, let I ⊂ A be a pd-ideal
containing p. Given a smooth A/I-algebra R, there is a canonical isomorphism

�R(1)/A ' RΓcrys(R/A),

where R(1) = R⊗A/I,φ A/p and �R(1)/A = RΓ((R(1)/A)�,O�).

The key ingredients for the proof of this theorem are the realization of divided powers via
δ-structures as well as the prismatic envelope of a δ-pair, paired with the fact that cohomol-
ogy on a chaotic site can be computed via a �ech-Alexander complex.

We will also introduce the Hodge-Tate comparison map; and, if time permits, we will also
see how to apply the crystalline comparison to show that the Hodge-Tate comparison map
is an isomorphism in characteristic p (we will not see a proof in the characteristic 0 case,
though):

Corollary 1.1 ([5], Corollary 5.4). Given a smooth A/p-algebra S, the Hodge-Tate compar-
ison map

Ω∗S/(A/p)
∼= H∗(�S/A)

is an isomorphism, where �S/A = �S/A ⊗LA A/I.

Prismatic cohomology seems to be much more powerful than we can appreciate during
this seminar, but we hope that this program gives a helpful mild introduction to it, while
relating it to what we will have learned about crystalline cohomology in the �rst part of the
seminar.

Convention: Whenever there is no precise reference given in the detailed description of a
talk, we implicitly refer to the main reference for that talk.
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2 Outline of the talks.

PART I :CRYSTALLINE COHOMOLOGY.

2.1 Divided Powers : I.

Overview: This talk introduces the building blocks for de�ning crystalline cohomology, i.e.
"divided powers". We shall learn basic terminologies related to divided powers on the level
of rings. The talks shall end with de�ning "extension of P.D structures along Algebras" and
notion of compatibility of P.D structures.

Main reference: [1, Chapter 3, 3.1�3.18 , Appendix A].

In detail: Introduce the basic de�niton with examples (3.1-3.2). De�ne the notion of "sub
P.D ideals" (3.4) and prove lemmas following it. De�ne "sub P.D algebras"(3.7). Introduce
Roby's divided power envelope of a module ΓA(M) from Appendix A and state Theorem
(3.9). Prove and state the propositions(3.10-3.12). Introduce the notion of "set of P.D
generators of I" (3.13), extension of algebras (3.14) and notion of compatibility(3.17). Also
state and sketch the proof of propositions (3.15-3.16).

2.2 Divided Powers : II.

Overview : This lecture continues the notion of divided powers on level of the rings and
extend it on level of formal schemes. The talk starts with de�ning analogue of formal com-
pletion in divided power setup. We also introduce notion of ideals being "P.D nilpotent". We
then move to level of schemes and de�ne divided power envelope of X in Y , where X ↪→ Y
is a closed immersion of schemes. We study the structure of these envelopes in the usual
setting as well as in the setting of formal schemes.

Main reference: [1, Chapter 3, 3.18�3.35].

In detail: Introduce the algebra DB,γ(J) ,state Theorem 3.19 and sketch the proof of it.
State remark 3.20. State the de�nitions, propositions and corollaries (3.21-3.29). Give a
sketch of the proofs of the propositions and corollaries mentioned above. Explain the notion
of P.D sheaf of rings and Spec(A, I, γ). Explain the setup of closed immersion of schemes
and sketch the proof of proposition (3.30-3.32). Do the same in the setting of formal schemes
(3.33-3.35).

2.3 The Crystalline Topos : I.

Overview: This lecture introduces the notion of Crystalline site and its basic properties.
The main statement that we will prove is to associate a morphism of topoi corresponding to
a PD morphism S ′ → S. We shall de�ne global section functors and cohomology functors
in the crystalline setting. The talk shall end with stating the rigidity property of crystalline
cohomology.

6
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Main reference: [1, Chapter 5, 5.1�5.17 ] and [3, Lecture 5, Section 4] .

In detail: De�ne the crystalline site and explain the notion of sheaves and presheaves on
the site. Prove proposition 5.1. State the examples 5.2. Recall the de�nition of morphism of
topoi (5.4). De�ne the pullback functor (5.6). Prove proposition 5.7 and sketch the proof of
proposition 5.8. Sketch the proof of proposition 5.9 via stating the statements 5.10 -5.13.
De�ne the global section functor (5.15) and discuss it in the crystalline setting. De�ne the
cohomology functors H i. Give a sketch of proof of rigidity along certain PD thickenings
(5.17) using proposition 5.16.

2.4 The Crystalline Topos : II.

Overview : This talk continues the discussion on crystalline topos. More precisely, we shall
understand about the usual morphism of topoi (X/S)cris → XZar. We shall understand the
localization functor (X/S)cris|Z̃ → (X/S)cris where Z̃ = Hom(−, Z) the usual representable
sheaf and its consequences on the cohomology. .

Main reference: [1, Chapter 5, 5.18�5.29].

In detail: State Proposition 5.18 which describes the morphism of topoi from Crystalline to
Zariski. De�ne the section functor(5.19) and its consequence in cohomology (5.20). Brie�y
sketch the proof of propositions 5.22-5.24 which explains canonical isomorphism in cohomol-
ogy of localization in any topos. Explain the description of localization in crystalline setting
and sketch the proof of propositions and corollaries (5.25-5.27).

2.5 Crystals I.

Overview: This lecture introduces the notions of crystals and introduces the notion of sheaf
of di�erentials in the divided power setting. In particular, we shall see that the sheaf of
di�erentials are not crystals but they are close to being a crystal. We shall also come across
the notion of divided De Rham Complex in the divided power setting of rings.

Main reference: [8, Chapter 59, Section 6, 11 and 12] and [1, Chapter 6].

In detail: De�ne crystals ([8, Chapter 59, Section 11.1]) and prove lemma 11.2. State the
de�nition of crystal in quasi-coherent OX-modules (De�nition 11.3). State proposition 6.2
from [1, Chapter 6].
Introduce the notion of divided power derivations from [8, Chapter 59, Section 6.1]. Sketch
the proof of lemmas 6.2-6.6 from [8, Chapter 59]. De�ne the divided power de Rham complex
([8, Chapter 59, Remark 6.7]).
Move to the section of sheaf of di�erentials from [8, Chapter 59, Section 12]. Introduce the
notion of S-derivations [8, Chapter 59, De�nition 12.1] and de�ne ΩX/S in the crystalline
setting. State lemmas 12.2 -12.5 in loc. cit. Sketch the proof of Lemmas 12.6 in loc. cit to
prove that ΩX/S is not a crystal.
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2.6 Crystals II.

Overview : This lecture continues the discussion of quasi-coherent crystals from the pre-
vious lecture. Particularly, the aim is to understand the category of quasi-coherent crystals
on (X/S)cris in terms of " quasi-nilpotent integrable connections" where X and S are a�ne.
This shall help us to prove the comparison theorem between Crystalline and De Rham Co-
homology.
The lecture shall introduce general notion of Cohomology of Categories and introduce the
�ech-Alexander Complex associated to a general topos. We shall use it to prove that Crys-
talline Cohomology can be computed by such a complex. Morever, the notions shall be also
used in Prismatic Cohomology in second part of our seminar.

Main reference: [8, Chapter 59, Sections , 14, 15, 17 and 18 ], [3, Chapter 5, Section 4]
and [2, Section 2].

In detail: De�ne the De Rham Complex in the small crystalline site ([8, Chapter 15, Section
14]). Introduce the notions of connections ([8, Chapter 15, Section 15]) and prove Lemma
15.1 in loc. cit. Move to [8, Chapter 59, Section 17] and introduce the notations D,ΩD and
D(n). Introduce the conditions (1), (2), (3) and (4) for [8, Chapter 59, Lemma 17.3]. State
and sketch the proof of lemma 17.3 in loc. cit. State and sketch the proof of Proposition
17.4 in loc. cit.
Describe the notion of Cohomology of Categories from [3, Chapter 5, Section 4] and de�ne
the �ech Alexander Complex (the complex de�ned in [3, Chapter 5, Lemma 4.3]). State
[8, Chapter 59, Lemma 18.2] in the crystalline site. Use the above lemmas to deduce the
de�nition of �ech-Alexander Complex given in [2, Notation 2.1] and also deduce [2, Lemma
2.4] as a consequence of lemmas mentioned above.

2.7 The Comparison theorem.

Overview : In this lecture, we shall give a sketch of the prove of the comparison theorem,
which is : Let X be a smooth variety over Z/p, then the crystalline cohomology of X is
canonically identi�ed as the de Rham cohomology of a lift of X over Zp provided it exists.
We give a sketch of the proof on a�ne case. The talk shall end with brie�y discussing the
theorem in the global case.

Main Reference: The main reference is [2].

In detail: Recall the �ech-Alexander Complex as in [2, Notation 2.1] as done in the previous
lecture. Move to the proof on the a�ne case and state the lemmas and explain the proof
of theorem 2.12 (2.12-2.17). Also recall the notions of simplicial modules in the context if
time permits (2.16). Move to section 3 and state theorems 3.2 and 3.6. State remark 3.7 and
prove corollary 3.8 using theorem 3.6.
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PART II : PRISMATIC COHOMOLOGY.

2.8 Basics on δ-rings.

Overview: The aim of this talk is to introduce δ-rings and establish some basic results for
them, namely that the category of δ-rings has all limits and colimits, there are free objects,
there is a good notion of quotient δ-rings, and the δ-structure extends to localizations and
completions. The talk ends with the discussion of distinguished elements.

Main reference: [5, Chapter 2].

In detail: Give the de�nition of a δ-ring (De�nition 2.1) and provide some examples, see for
instance [3, Lecture 2], explain Remarks 2.2 and 2.4, Example 2.6. Discuss limits, colimits
of δ-rings and free δ-rings (Remark 2.7, Lemma 2.11) and �nally discuss quotients of δ-rings,
see 2.8, 2.9 and 2.10. Explain how to extend δ-structure to localization and completions
(Lemma 2.15 and 2.17).

Introduce distinguished elements (De�nition 2.19) and give the examples 2.20 and 2.21.
Prove Lemma 2.25.

2.9 Perfect δ-rings and prisms.

Overview: The �rst part of the talk is concerned with those δ-rings whose associated
Frobenius is an isomorphism, i.e. perfect δ-rings. It will cover the equivalence of categories
between p-complete perfect δ-rings and perfect Fp-algebras, via (A, δ) 7→ A/p. We will also
see that a distinguished element in a perfect δ-ring (and more generally in a p-torsionfree,
p-adically separated δ-ring, whose reduction mod p is reduced) is a nonzerodivisor if and only
if the quotient by that element has bounded p∞-torsion.

The second part of the talk introduces prisms together with examples and establishes
some �rst properties of them, such as the rigidity of prisms.

Main reference: [5, Chapter 2 and 3].

In detail: Cover section 2.4 on perfect δ-rings, in particular prove the equivalence of cate-
gories Corollary 2.31. You can skip Remark 2.30 and Lemma 2.32; prove Lemma 2.34.

De�ne prisms (De�nition 3.2)1, prove Lemma 3.1 and give examples (e.g. Example 3.3,
3.4 and [3, Lecture 5, p.1]). State the rigidity of prisms, Lemma 3.5, and state Lemma 3.6
and �nish by proving Lemma 3.8.

1We do not plan to discuss derived completeness. Since we will only deal with bounded prisms and these
are classically complete, this should be good enough for our purpose.
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2.10 Perfectoid rings.

Overview: This talk covers basics on perfectoid rings with examples. In particular, we
will see equivalent ways of de�ning a perfectoid ring. Along the way, we recall Fontaine's
in�nitesimal ring and the canonical map from p-adic Hodge theory coming from the adjunc-
tion between the ring of Witt vectors and tilting. Finally, we will establish an equivalence
of categories between perfectoid rings and perfect prisms, given by mapping a perfect prims
(A, I) to A/I, using results from the previous talk.

Main reference: [4, Chapter 3]

In detail: Following �3.1 de�ne the tilt of a p-adically complete ring and introduce Fontaine's
ring; state Lemma 3.2 (i). Mention that the functor of Witt vectors W (−), as a functor from
perfect Fp-algebras to p-adically complete Zp-algebras, is left adjoint to the tilting functor.
De�ne Fontaine's (surjective) map to be the counit of this adjunction, and write it down
explicitly, see for example Lemma 3.3. Write down what its kernel is in the example of OCp

from p-adic Hodge theory, see [7, Proposition 5.12].
De�ne perfectoid rings, De�nition 3.5, sketch a proof of Lemma 3.10, and discuss some

examples of perfectoid rings, e.g OFp , Example 3.6 or others... Explain the equivalence of
categories between perfect prisms and perfectoid rings, [5, Theorem 3.10].

2.11 Prismatic site and Hodge-Tate comparison map.

Overview: In this talk we will de�ne the prismatic site, as well as the prismatic complex
computing prismatic cohomology and the Hodge-Tate complex. The latter will be related to
de Rham cohomology via the Hodge-Tate comparison map.

Main reference: [3, Lecture 5]

In detail: De�ne the prismatic site of R relative to A, (R/A)�, where (A, I) is a �xed base
prism and R is a p-completely smooth2 A/I-algebra, and de�ne the structure sheaves O�
and O�, De�nition 2.1. Give the examples 2.6, 2.7. Then de�ne the prismatic complex �R/A
and the Hodge-Tate complex �R/A, De�nition 2.10, and mention Example 2.11.

Justify the name "Hodge-Tate" complex by introducing the Hodge-Tate comparison map:
Restrict yourself to the crystalline setting (in particular there is no need for derived p-
completions of the modules of di�erentials). Follow �3.1 and �3.2, and �nish by stating
Theorem 3.8.

2See [3, Lecture 5, footnote 1] for the de�nition of p-complete smoothness; in the crystalline case this just
means that R is smooth as an algebra over A/p-algebra.
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2.12 The crystalline comparison isomorphism.

Overview: In this �nal talk we will see how crystalline cohomology can be recovered from
prismatic cohomology. The key ingredient will be to realize divided powers via δ-structures,
de�ning the prismatic envelope of a δ-pair and then comparing the crystalline and prismatic
site using �ech-Alexander complexes for both sides.

If time permits, we will also sketch a proof of the Hodge-Tate comparison map being an
isomorphism in the characteristic p setting, using the crystalline comparison theorem.

Main reference: [3, Lectures 5 and 6] and [5, Chapter 5]

In detail: Following [3, Lecture 5], de�ne the prismatic envelope of a δ-pair, Lemma 5.1, give
a sketch of Corollary 5.2, and discuss the �ech-Alexander complex for prismatic cohomology
(Construction 5.3).

Recall divided power envelopes, see e.g. Construction 1.1 and Lemma 1.2 in [3, Lecture
6]. Explain how to realize divided powers via δ-structures, i.e. prove [5, Corollary 2.38]
by sketching a proof of Lemma 2.37 in loc. cit. Use it to prove the crystalline comparison
theorem [5, p. 5.2] (Emerton's notes on this, [6, Lecture 19], might be useful; see also [3,
Lecture 6, Theorem 3.2]). Deduce a Frobenius descent result for the crystalline complex, [5,
Remark 5.3].

Optional3: If enough participants are willing to stay 30 minutes longer, we can sketch a
proof of the Hodge-Tate comparison theorem in characteristic p. Namely, explain Cartier's
isomorphism, Construction 1.9 in [3, Lecture 6]; and use it to sketch a proof of [5, Corollary
5.4], see also [3, �4, Lecture 6].
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That's all folks !!
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